新第一范文网:谁伤害过你,谁击溃过你,都不重要。重要的是谁让你重现笑容。

2021苏教版八年级数学分式知识点总结

崇灏 分享 时间: 加入收藏 我要投稿 点赞

数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累了一定的数学知识,并能应用实际问题。下面是小编整理的苏教版八年级数学分式知识点总结,仅供参考希望能够帮助到大家。

苏教版八年级数学分式知识点总结

1分式的定义:如果A、B表示两个整式,并且B中含有字母,那么式子叫做分式。

分式有意义的条件是分母不为零,分式值为零的条件分子为零且分母不为零

2.分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。

3.分式的通分和约分:关键先是分解因式

4.分式的运算:

分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。

分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。 分式乘方法则: 分式乘方要把分子、分母分别乘方。

分式的加减法则:同分母的分式相加减,分母不变,把分子相加减。异分母的分式相加减,先通分,变为同分母分式,然后再加减

混合运算:运算顺序和以前一样。能用运算率简算的可用运算率简算。

5. 任何一个不等于零的数的零次幂等于1, 即;当n为正整数时

6.正整数指数幂运算性质也可以推广到整数指数幂.(m,n是整数)

(1)同底数的幂的乘法:;

(2)幂的乘方:;

(3)积的乘方:;

(4)同底数的幂的除法:( a≠0);

(5)商的乘方:();(b≠0)

7. 分式方程:含分式,并且分母中含未知数的方程——分式方程。

解分式方程的过程,实质上是将方程两边同乘以一个整式(最简公分母),把分式方程转化为整式方程。

解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,因此分式方程一定要验根。

解分式方程的步骤 :

(1)能化简的先化简

(2)方程两边同乘以最简公分母,化为整式方程;

(3)解整式方程;

(4)验根.

增根应满足两个条件:一是其值应使最简公分母为0,二是其值应是去分母后所的整式方程的根。

分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。

列方程应用题的步骤是什么? (1)审;(2)设;(3)列;(4)解;(5)答.

应用题有几种类型;基本公式是什么?基本上有五种:

(1)行程问题:基本公式:路程=速度×时间而行程问题中又分相遇问题、追及问题.

(2)数字问题 在数字问题中要掌握十进制数的表示法.

(3)工程问题 基本公式:工作量=工时×工效. (4)顺水逆水问题 v顺水=v静水+v水. v逆水=v静水-v水.

8.科学记数法:把一个数表示成的形式(其中,n是整数)的记数方法叫做科学记数法.

用科学记数法表示绝对值大于10的n位整数时,其中10的指数是

用科学记数法表示绝对值小于1的正小数时,其中10的指数是第一个非0数字前面0的个数(包括小数点前面的一个0)

提高数学成绩诀窍

联想与总结

联想与总结贯穿与学习过程中的始终。对每一知识的认识,必定要有认识基础。寻找认识基础的过程即是联想,而认识基础的是对以前知识的总结。以前总结的越简洁、清晰、合理,越容易联想。这样就可以把新知识熔进原来的知识结构中为以后的某次联想奠定基础。联想与总结在解题中特别有效。也许你以前并没有这样的认识,但解题能力却很强,这说明你很聪明,你在不自觉中使用这种做法。如果你能很明确的认识这一点,你的能力会更强。

初中数学怎么学

认真听课:听课应包括听、思、记三个方面。听,听知识形成的来龙去脉,听重点和难点(记住预习中的疑点了吗?更要听仔细了),听例题的解法和要求,听蕴含的数学思想和方法,听课堂小结。思,一是要善于联想、类比和归纳,二是要敢于质疑,提出问题,大胆猜想。记,当然是指课堂笔记了,不是记得多就是有效的知道吗?影响了听课可就不如不记了,记什么,什么时候记,可是有学问的哩,记方法,记技巧,记疑点,记要求,记注意点,记住课后一定要整理笔记。

学习数学的方法是什么

学生只有从解题步骤、格式的规范化入手,进行严格要求、反复训练,才能克服学习敷衍了事、马马虎虎、不负责任的毛病。长时间的坚持训练及严格要求,必然会使学生养成优良的学习习惯,增强思维能力。

初中数学方程与方程组重要考点

一元一次方程:①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。

解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。

二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。

二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。

适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。

二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。

解二元一次方程组的方法:代入消元法/加减消元法。

苏教版八年级数学分式知识点总结相关文章:

长方体的体积教学设计公开课

小数的意义教学评价设计6篇

初二数学社团活动方案五篇

四年级数学说课稿范文五篇

小学二年级数学上册教案

张齐华平均数教学设计5篇

221381
领取福利

微信扫码领取福利

2021苏教版八年级数学分式知识点总结

微信扫码分享