新第一范文网:谁伤害过你,谁击溃过你,都不重要。重要的是谁让你重现笑容。

人教版初二数学下册知识点最新

淑燕 分享 时间: 加入收藏 我要投稿 点赞

学数学就是为了能在实际生活中应用,数学是人们用来解决实际问题的,其实数学问题就产生在生活中。人教版初二数学下册知识点最新你知道吗?一起来看看人教版初二数学下册知识点最新,欢迎查阅!

人教版初二数学下册知识点

证明

一、对事情作出判断的句子,就叫做命题. 即:命题是判断一件事情的句子。一般情况下:疑问句不是命题.图形的作法不是命题. 每个命题都有条件(condition)和结论(conclusion)两部分组成. 条件是已知的事项,结论是由已知事项推断出的事项. 一般地,命题都可以写成“如果……,那么……”的形式.其中“如果”引出的部分是条件,“那么”引出的部分是结论. 要说明一个命题是一个假命题,通常可以举出一个例子,使它具备命题的条件,而不具有命题的结论.这种例子称为反例。

二、三角形内角和定理:三角形三个内角的和等于180度。

1、证明三角形内角和定理的思路是将原三角形中的三个角“凑”到一起组成一个平角.一般需要作辅助线.既可以作平行线,也可以作一个角等于三角形中的一个角.

2、三角形的外角与它相邻的内角是互为补角.

三、三角形的外角与它不相邻的内角关系是:

(1)三角形的一个外角等于和它不相邻的两个内角的和.

(2)三角形的一个外角大于任何一个和它不相邻的内角.

四、证明一个命题是真命题的基本步骤是:

(1)根据题意,画出图形.

(2)根据条件、结论,结合图形,写出已知、求证.

(3)经过分析,找出由已知推出求证的途径,写出证明过程. 在证明时需注意:

(1)在一般情况下,分析的过程不要求写出来.

(2)证明中的每一步推理都要有根据. 如果两条直线都和第三条直线平行,那么这两条直线也相互平行。30。所对的直角边是斜边的一半。斜边上的高是斜边的一半。

常考知识点:1、三角形的内角和定理,及三角形外角定理。2两直线平行的性质及判定。命题及其条件和结论,真假命题的定义。

初二数学下册知识点归纳

第一章分式

1分式及其基本性质分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变

2分式的运算

(1)分式的乘除乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

(2)分式的加减加减法法则:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减

3整数指数幂的加减乘除法

4分式方程及其解法

第二章反比例函数

1反比例函数的表达式、图像、性质

图像:双曲线

表达式:y=k/x(k不为0)

性质:两支的增减性相同;

2反比例函数在实际问题中的应用

第三章勾股定理

1勾股定理:直角三角形的两个直角边的平方和等于斜边的平方

2勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形。

第四章四边形

1平行四边形

性质:对边相等;对角相等;对角线互相平分。

判定:两组对边分别相等的四边形是平行四边形;

两组对角分别相等的四边形是平行四边形;

对角线互相平分的四边形是平行四边形;

一组对边平行而且相等的四边形是平行四边形。

推论:三角形的中位线平行第三边,并且等于第三边的一半。

2特殊的平行四边形:矩形、菱形、正方形

(1)矩形

性质:矩形的四个角都是直角;

矩形的对角线相等;

矩形具有平行四边形的所有性质

判定:有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;

推论:直角三角形斜边的中线等于斜边的一半。

(2)菱形性质:菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形具有平行四边形的一切性质

判定:有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四边相等的四边形是菱形。

(3)正方形:既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有性质。

3梯形:直角梯形和等腰梯形

等腰梯形:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等;同一个底上的两个角相等的梯形是等腰梯形。

八年级下册数学知识点

分解因式

一、公式:1、 ma+mb+mc=m(a+b+c)2、a2-b2=(a+b)(a-b)3、a2±2ab+b2=(a±b)2 二、把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式。

1、把几个整式的积化成一个多项式的形式,是乘法运算.

2、把一个多项式化成几个整式的积的形式,是因式分解.

3、ma+mb+mc m(a+b+c)

4、因式分解与整式乘法是相反方向的变形。

三、把多项式的各项都含有的相同因式,叫做这个多项式的各项的公因式.提公因式法分解因式就是把一个多项式化成单项式与多项式相乘的形式. 找公因式的一般步骤:

(1)若各项系数是整系数,取系数的最大公约数;

(2)取相同的字母,字母的指数取较低的;

(3)取相同的多项式,多项式的指数取较低的.

(4)所有这些因式的乘积即为公因式.

四、分解因式的一般步骤为:

(1)若有“-”先提取“-”,若多项式各项有公因式,则再提取公因式.

(2)若多项式各项没有公因式,则根据多项式特点,选用平方差公式或完全平方公式.

(3)每一个多项式都要分解到不能再分解为止.

五、形如a2+2ab+b2或a2-2ab+b2的式子称为完全平方式. 分解因式的方法:1、提公因式法。2、运用公式法。


人教版初二数学下册知识点最新相关文章:

中考数学人教版八年级下册知识点大全

新人教版九年级数学下册知识点总结归纳

新人教版小学二年级数学下册知识点

人教版七年级下册数学知识点大全

2021中考人教版七年级数学下册知识点大全

七年级下册数学知识点总结汇总2021

九年级下册数学知识点归纳人教版2021

小学数学一年级下册重点知识点汇总2021

小学二年级下册数学知识点复习最新

2021中考数学七年级下册知识点归纳和整理

221381
领取福利

微信扫码领取福利

人教版初二数学下册知识点最新

微信扫码分享