新第一范文网:谁伤害过你,谁击溃过你,都不重要。重要的是谁让你重现笑容。

《认识方程》教学设计思路5篇

张林 分享 时间: 加入收藏 我要投稿 点赞

《认识方程》教学设计思路5篇

《认识方程》是一节数学概念课,如何让学生了解是个很重要的问题。以下是小编整理的内容,供您阅读,参考。希望对您有所帮助!

《认识方程》教学设计思路1

教学内容:教科书第1~2页,例1、例2、试一试、练一练,练习一第1~3题。

教学目标:

1、认识等式,以具体的实例引导学生通过自主的探索活动,初步理解等式的特征。

2、通过观察比较,使学生认识到含有未知数的等式是方程,感受等式与方程的联系与区别,体会方程是特殊的等式。

教学重点:理解等式的性质,理解方程的意义。

教学难点:利用等式性质和方程的意义列出方程。

教学准备:多媒体课件

教学过程:

一、情景引入

1、出示天平。

知道这是什么吗?你知道它是按照什么原理制造的吗?

说说你的想法。

如果天平左边的物体重50克,右边的放多少克才能保持天平的平衡的呢?

二、教学新课

1、教学例1。

(1)出示例1图。

你会用等式表示天平两边物体的质量关系吗?把它写出来。

50+50=100 (板书)

说说你是怎样想的?

(2)指出等式的左边,等式的右边等概念。

等式有什么特征?(等式的左边和右边结果相等;等式用等号连接)

能说说什么样的式子叫做等式吗?(左右两边相等的式子叫做等式)

2、教学例2。

(1)出示例2图。

天平往哪一边下垂说明什么?(哪一边物体的质量多)

你能用式子表示天平两边物体的质量关系吗?

学生独立完成填写,集体汇报。

板书:x+50>100  x+50=150

X+50<200  x+x=200

如果让你把这四个式子分类,应分为几类?为什么?

指出:左右两边相等的式子就叫做等式,而这些等式与前面所看到的等式又有什么不同?(等式中含有未知数)

知道像x+50=100,x+x=100这样的等式叫什么吗?(方程)

说说什么是方程?你觉得这句话里哪两个词比较重要?(含有未知数、等式)

(2)讨论:等式与方程有什么关系?

小组讨论。

指出:方程一定是等式,但等式不一定是方程。

方程是特殊的等式。他们的关系可以用集合圈表示。

3、教学“试一试”。

独立完成,完成后汇报方法。

让学生说一说,每题中的方程哪个更简洁一些?

指出:像500÷2=x,20-12=x虽然也是方程,但在列方程时应尽量避免这样x单独在等号左边或右边的方法。

4、完成“练一练。

(1)完成第1题。

独立完成判断后说说想法。

(2)完成第2题。

(3)完成第3题。

交流所列方程,说说你为什么这样列?你是怎么想的?

三、巩固练习

1、完成练习一第1题。

能说说每个线段表示的意思吗?方程怎样列呢?

小组中交流列式。

2、完成练习一第2题。

理解题意,说说数量关系是怎样的?

列出方程并交流。

3、完成练习一第3题。

四、课堂总结

通过学习,你有哪些收获?

板书设计:

方程

等式  50+50=100  x+50>100   x+50=150

方程   X+50<200  x+x=200

《认识方程》教学设计思路2

教学目标:

1、 借助天平明白等式的含义,并在分类的基础上充分感受、认识什么是方程。

2、 会用方程表示数量关系。

3、 培养学生观察、描述、分类、抽象、概括、应用等能力。

4、 感受方程与现实生活的密切联系,体验数学活动的探索性。

重点:理解方程是含有未知数的等式;

难点:方程的意义抽象的过程。

课前谈话:渗透平衡和等量(谈体验)

教学过程:

一、激情导入

出示天平,(见过天平吗?在那里见过?有什么作用啊?)根据天平的状态列出不同的式子,(不平衡让学生想办法得出让天平两边平衡)。

二、探究新知

1.对不同的式子进行分类(不要有任何要求)

让学生先独立思考,然后小组合作交流自己的想法。

2.小组汇报分类的想法。小组之间在倾听的过程中逐渐完善自己本组的想法。

让小组的代表说说自己组是怎样分类的?为什么这样分类?

3.教师根据各小组的分类进行小结:像这样的用等号连接左右两边的叫做等式。像这样的这一类叫方程。板书课题。(在学生分类的基础上)

4.小组探究“什么是方程?”(先观察式子,独立思考,后小组交流)

5.小组汇报各组的想法。在各组倾听的基础上逐渐完善自己的想法。

6.教师在学生小组汇报的基础上进行小结:像这样,含有未知数的等式叫方程。

7.生举例。

8、师举例,让学生说哪些是方程哪些不是方程,并说明理由。

9、通过刚才的几道算式,让学生说说对方程又有了哪些新的认识?

10、判断两句话:所有的方程都是等式,所有的等式都是方程。

11、画图表示方程与等式之间的关系。

三、应用练习

1.判断下列式子是不是方程。

2.看图列方程。

3.根据题意列方程。

四、拓展延伸

1、谈谈自己在知识和情感上的收获。

2、送给同学们一个方程:天才+X=成功。

《认识方程》教学设计思路3

教学内容:

教科书第1页的例1、例2和试一试,完成练一练和练习一的第1~2题。

教学目标:

理解方程的含义,初步体会等式与方程的联系与区别,体会方程就是一类特殊的等式。

教学重点:

理解并掌握方程的意义。

教学难点:

会列方程表示数量关系。

教学过程:

一、教学例1

1.出示例1的天平图,让学生观察。

提问:图中画的是什么?从图中能知道些什么?想到什么?

2.引导

(1)让不熟悉天平不认识天平的学生认识天平,了解天平的作用。

(2)如果学生能主动列出等式,告诉学生:像“50+50=100”这样的式子是等式,并让学生说说这个等式表示的意思;如果学生不能列出等式,则可提出“你会用等式表示天平两边物体的质量关系吗?”

二、教学例2

1.出示例2的天平图,引导学生分别用式子表示天平两边物体的质量关系。

2.引导:告诉学生这些式子中的“x”都是未知数;观察这些式子,说一说写出的式子中哪些是等式,这些等式都有什么共同的特点。

3.讨论和交流:写出的式子中,有几个是等式,有几个不是,而写出的等式都含有未知数,在此基础上,揭示方程的概念。

三、完成练一练

1.下面的式子哪些是等式?哪些是方程?

2.将每个算式中用图形表示的未知数改写成字母。

四、巩固练习

1.完成练习一第1题

先仔细观察题中的式子,在小组里说说哪些是等式,哪些是方程,再全班交流。要告诉学生,方程中的未知数可以用x表示,也可以用y表示,还可以用其他字母表示,以免学生误以为方程是含有未知数x的等式。

2.完成练习一第2题

五、小结

今天,我们学习了什么内容?你有哪些收获?需要提醒同学们注意什么?还有什么问题?

六、作业

完成补充习题

板书设计:

方程的意义

X+50=100

X+X=100

像X+50=150、2X=200这样含有未知数的等式叫做方程

《认识方程》教学设计思路4

教学内容:苏教版教科书第1~2页的内容。

教学目的:

⑴在具体的情景中,让学生理解等式、方程的含义,体会等式和方程的关系,能根据情景图正确地列出方程。

⑵在观察、分析、抽象、概括和交流的过程中,让学生经历将现实问题抽象成式和方程的过程,积累将现实问题数学化的经验,感受方程的思想方法及价值,发展抽象能力和符号感。

⑶学生在数学活动的过程中,养成独立思考、主动与他人合作交流等习惯,获得成功的体验,培养对数学的学习兴趣。

教学流程:

一、情景引入,初步展开新课。

⑴出示“天平”情景图,了解学情。

让学生说说,你知道了什么?

天平;两边是一样重的;指针在中间表示就表示相等等等。

⑵用等式表示天平两边物体的质量关系。

先写出等式;交流等式:50+50=100,交流这样列式的思考;揭示概念,象这样表示两边相等的式子就是等式。

二、继续出示情景图,深入展开新课。

⑴出示情景图,明确要求。

用式子表示天平两边物体的质量关系。

⑵独立思考,试写式子。

学生在书上独立填写。

⑶学情反馈,班级交流。

让学生自行上黑板写不同的式子。

可能会出现下面这些式子:x+50>100,x+50≠100, x+50=100+50,x+50<200,x+50≠200,x+x=200,2x=200等

甄别确认正确答案。

⑷尝试分类,理解方程的意义。

明确要求——分类;为类别起名,等式,不等式;独立分类,等式:x+x=200,2x=200 ,x+50=100+50,50+50=100,不等式:x+50>100,x+50≠100,x+50<200,x+50≠200。

再分类,不等式感悟“>”和“<”比“≠”更准确;等式分类:等式中有一部分叫等式(含有未知数)。

⑸体会等式和方程的关系。

用符号表示等式和方程的关系,例如集合图等;用形象的情景表示等式和方程的关系,例如部分和总数等。

三、独立练习,进一步内化新知。

⑴完成练一练1。

确定用不同的符号表示方程和等式,确定寻找等式和方程的思路和方法;交流矫正。

⑵下面哪些是等式,哪些是方程?用线连一连。

9-x=3 20+30=50

80÷4=20 等式 x+17=38

x-15 方程 36+ x<40

7y=63 54÷x=9

⑶完成第2页试一试和看图列方程。

先独立列方程,再在小组里交流列式的思考。

⑷完成练习一1~3。

重点交流第2题。

《认识方程》教学设计思路5

在学生交流了两种分类方法之后,教师引导学生对照黑板上所分类的式子卡片思考:你能把两种分类方法综合起来对这些式子进行分类吗?

学生对黑板上的式子进行调整。教师在学生分类的基础上,标注类别序号。

谈话:同学们通过思考、交流,把这些式子分成了四类。请观察这几类式子,说一说每组式子有什么特征?

学生描述后,教师指出:正如你们所描述的,像第③类式子这样,含有未知数的等式是方程。

6. 完成“练一练”第1题。

依次出示前三道式子:6 + x = 16;36 - 7 = 29;60 + 23 > 70,学生逐一做出是否是方程的判断,并说明理由。(在学生对“60 + 23 > 70”做出判断后,教师将这道式子板书在算式卡片的第②类中)

出示第1题的其他式子,学生判断哪些是方程。接着,让学生判断哪些是等式。结合学生的判断,教师指出:方程中的未知数,既可以用x表示,也可以用y表示,还可以用其他字母表示。

反思:根据刚才的练习,你发现等式与方程有什么关系?学生在小组里交流。

在学生交流的基础上,用课件结合“练一练”第1题进行动态演示:先是将所有的等式画上集合圈,再闪烁显示其中的方程式,将方程式画上集合圈,集合圈中的等式渐渐淡化直至消失,出现文字“等式”与“方程”,如右图:

教师引导学生再结合黑板上对式子进行的分类,理解:方程是一类特殊的等式;等式中,一部分是方程。

7. 完成“练一练”第2题。

学生写一些方程,再在小组里交流。

三、 进一步理解方程的含义,体会方程思想

1. 教学“试一试”。

出示“试一试”(图略)。

学生先用语言表述图中告诉了我们什么,数量之间有怎样的相等关系,再列方程。

2. 完成“练一练”第3题。

学生先用语言描述图中的等量关系,再列方程。

四、 课堂总结(略)

五、 课堂作业

练习一第1~3题。

说明

方程是刻画现实世界数量关系的数学模型。本课教学设计,基于对教材编写意图的理解,强调从数学建模的角度开展方程的教学。以天平为形象支撑,结合具体的问题情境,“用式子表示天平两边物体的质量关系”,让学生通过观察、分析、写出式子,再通过分类,比较式子的异同,在讨论和交流活动中,由具体到抽象,逐步感受,理解方程的含义。概念的构建过程,并不是由教师机械地传授甚至告诉学生,而是用数学符号提炼现实生活中特定关系的过程。

由于认识水平的局限性,小学生往往把运算中的等号看作是“做什么”的标志。如在算式“3 + 2”的后面写上等号,往往被理解是执行加法运算的标志。他们通常把等号解释为“答案是……”。而实际上,应把等号看作是相等和平衡的符号,这个符号表示一种关系,即等号两边的数量是相等的,也就是在3 + 2与5之间建立了相等的关系。本课设计,首先着力帮助学生构建对相等关系和等式的理解,而不是蜻蜓点水般一带而过,从而为后续认识方程,体会列方程是表示现实情境中的等量关系,方程是刻画现实世界的模型,建立良好的基础。

方程,对小学生来说,不仅是形式上的认识,也是感受在解决实际问题过程中建立模型的过程。全课教学过程,教师在出示图的基础上,都是引导学生先用语言描述,即把日常语言抽象成数学语言,进而转换成符号语言。如“试一试”第二幅图,学生很容易列出形如“20 - 12 = x”的式子,这样的式子反映的是学生仍然停留于算术思路。让学生先用语言描述图意,从直观的图中抽象出文字语言表述的数量间的相等关系,然后让学生进一步用数学式子表示。在多次经历这样的活动过程中,学生感受到方程与实际问题的联系,领会数学建模的思想和基本过程,顺利实现从算术思维向代数思维的过渡。


《认识方程》教学设计思路相关文章:

★ 小学五年级《方程》优秀教案设计三篇

★ 小学五年级数学《方程的意义》教案范本三篇

★ 小学四年级解方程教案模板

★ 小学数学精选多篇教案大全

★ 人教四年级下数学教案模板

★ 小学四年级数学下册《天平游戏》教案案例三篇

★ 同课异构教学活动心得体会范文5篇

★ 小学老师个人教学工作计划范文5篇精选

★ 四年级下册数学工作计划北师大范文5篇

221381
领取福利

微信扫码领取福利

《认识方程》教学设计思路5篇

微信扫码分享