新第一范文网:谁伤害过你,谁击溃过你,都不重要。重要的是谁让你重现笑容。

双曲线的基本知识点大全

嘉欣 分享 时间: 加入收藏 我要投稿 点赞

双曲线的基本知识点大全

一般的,双曲线(希腊语“Υπερβολία”,字面意思是“超过”或“超出”)是定义为平面交截直角圆锥面的两半的一类圆锥曲线。以下是小编为大家带来的双曲线的基本知识点大全,欢迎参阅呀!

双曲线的基本知识点

双曲线的基本知识点大全

1. 双曲线的第一定义:

⑴①双曲线标准方程:. 一般方程:.

⑵①i. 焦点在x轴上:

顶点: 焦点:  准线方程 渐近线方程:或

ii. 焦点在轴上:顶点:. 焦点:. 准线方程:. 渐近线方程:或,参数方程:或 .

②轴为对称轴,实轴长为2a, 虚轴长为2b,焦距2c. ③离心率. ④准线距(两准线的距离);通径. ⑤参数关系. ⑥焦点半径公式:对于双曲线方程(分别为双曲线的左、右焦点或分别为双曲线的上下焦点)

“长加短减”原则:

构成满足(与椭圆焦半径不同,椭圆焦半径要带符号计算,而双曲线不带符号)

⑶等轴双曲线:双曲线称为等轴双曲线,其渐近线方程为,离心率.

⑷共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线,叫做已知双曲线的共轭双曲线.与互为共轭双曲线,它们具有共同的渐近线:.

⑸共渐近线的双曲线系方程:的渐近线方程为如果双曲线的渐近线为时,它的双曲线方程可设为.

例如:若双曲线一条渐近线为且过,求双曲线的方程?

解:令双曲线的方程为:,代入得.

⑹直线与双曲线的位置关系:

区域①:无切线,2条与渐近线平行的直线,合计2条;

区域②:即定点在双曲线上,1条切线,2条与渐近线平行的直线,合计3条;

区域③:2条切线,2条与渐近线平行的直线,合计4条;

区域④:即定点在渐近线上且非原点,1条切线,1条与渐近线平行的直线,合计2条;

区域⑤:即过原点,无切线,无与渐近线平行的直线.

小结:过定点作直线与双曲线有且仅有一个交点,可以作出的直线数目可能有0、2、3、4条.

(2)若直线与双曲线一支有交点,交点为二个时,求确定直线的斜率可用代入法与渐近线求交和两根之和与两根之积同号.

⑺若P在双曲线,则常用结论1:P到焦点的距离为m = n,则P到两准线的距离比为m︰n.

简证: =.

常用结论2:从双曲线一个焦点到另一条渐近线的距离等于b.

北师大版初二数学下册知识点归纳

第一章分式

1分式及其基本性质分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变

2分式的运算

(1)分式的乘除乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

(2)分式的加减加减法法则:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减

3整数指数幂的加减乘除法

4分式方程及其解法

第二章反比例函数

1反比例函数的表达式、图像、性质

图像:双曲线

表达式:y=k/x(k不为0)

性质:两支的增减性相同;

2反比例函数在实际问题中的应用

第三章勾股定理

1勾股定理:直角三角形的两个直角边的平方和等于斜边的平方

2勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形。

第四章四边形

1平行四边形

性质:对边相等;对角相等;对角线互相平分。

判定:两组对边分别相等的四边形是平行四边形;

两组对角分别相等的四边形是平行四边形;

对角线互相平分的四边形是平行四边形;

一组对边平行而且相等的四边形是平行四边形。

推论:三角形的中位线平行第三边,并且等于第三边的一半。

2特殊的平行四边形:矩形、菱形、正方形

(1)矩形

性质:矩形的四个角都是直角;

矩形的对角线相等;

矩形具有平行四边形的所有性质

判定:有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;

推论:直角三角形斜边的中线等于斜边的一半。

(2)菱形性质:菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形具有平行四边形的一切性质

判定:有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四边相等的四边形是菱形。

(3)正方形:既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有性质。

3梯形:直角梯形和等腰梯形

等腰梯形:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等;同一个底上的两个角相等的梯形是等腰梯形。

初二数学下册知识点归纳

第一章一元一次不等式和一元一次不等式组

一、一般地,用符号(或),(或)连接的式子叫做不等式.

能使不等式成立的未知数的值,叫做不等式的解.不等式的解不,把所有满足不等式的解集合在一起,构成不等式的解集.求不等式解集的过程叫解不等式.

由几个一元一次不等式组所组成的不等式组叫做一元一次不等式组

不等式组的解集:一元一次不等式组各个不等式的解集的公共部分.

等式基本性质1:在等式的两边都加上(或减去)同一个数或整式,所得的结果仍是等式.基本性质2:在等式的两边都乘以或除以同一个数(除数不为0),所得的结果仍是等式.

二、不等式的基本性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变.(注:移项要变号,但不等号不变.)性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.不等式的基本性质1、若ab,则a+cb+c;2、若ab,c0则acbc若c0,则ac不等式的其他性质:反射性:若ab,则bb,且bc,则ac

三、解不等式的步骤:1、去分母;2、去括号;3、移项合并同类项;4、系数化为1.四、解不等式组的步骤:1、解出不等式的解集2、在同一数轴表示不等式的解集.五、列一元一次不等式组解实际问题的一般步骤:(1)审题;(2)设未知数,找(不等量)关系式;(3)设元,(根据不等量)关系式列不等式(组)(4)解不等式组;检验并作答.

六、常考题型:1、求4x-67x-12的非负数解.2、已知3(x-a)=x-a+1r的解适合2(x-5)8a,求a的范围.

3、当m取何值时,3x+m-2(m+2)=3m+x的解在-5和5之间.

第二章分解因式

一、公式:1、ma+mb+mc=m(a+b+c)2、a2-b2=(a+b)(a-b)3、a22ab+b2=(ab)2二、把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式.1、把几个整式的积化成一个多项式的形式,是乘法运算.2、把一个多项式化成几个整式的积的形式,是因式分解.3、ma+mb+mcm(a+b+c)4、因式分解与整式乘法是相反方向的变形.

三、把多项式的各项都含有的相同因式,叫做这个多项式的各项的公因式.提公因式法分解因式就是把一个多项式化成单项式与多项式相乘的形式.找公因式的一般步骤:(1)若各项系数是整系数,取系数的公约数;(2)取相同的字母,字母的指数取较低的;(3)取相同的多项式,多项式的指数取较低的.(4)所有这些因式的乘积即为公因式.

四、分解因式的一般步骤为:(1)若有-先提取-,若多项式各项有公因式,则再提取公因式.(2)若多项式各项没有公因式,则根据多项式特点,选用平方差公式或完全平方公式.(3)每一个多项式都要分解到不能再分解为止.

五、形如a2+2ab+b2或a2-2ab+b2的式子称为完全平方式.分解因式的方法:1、提公因式法.2、运用公式法.

第三章分式

注:1对于任意一个分式,分母都不能为零.

2分式与整式不同的是:分式的分母中含有字母,整式的分母中不含字母.

3分式的值为零含两层意思:分母不等于零;分子等于零.(中B0时,分式有意义;分式中,当B=0分式无意义;当A=0且B0时,分式的值为零.)

常考知识点:1、分式的意义,分式的化简.2、分式的加减乘除运算.3、分式方程的解法及其利用分式方程解应用题.

第四章相似图形

一、定义表示两个比相等的式子叫比例.如果a与b的比值和c与d的比值相等,那么或a∶b=c∶d,这时组成比例的四个数a,b,c,d叫做比例的项,两端的两项叫做外项,中间的两项叫做内项.即a、d为外项,c、b为内项.如果选用同一个长度单位量得两条线段AB、CD的长度分别是m、n,那么就说这两条线段的比(ratio)AB∶CD=m∶n,或写成=,其中,线段AB、CD分别叫做这两个线段比的前项和后项.如果把表示成比值k,则=k或AB=kCD.四条线段a,b,c,d中,如果a与b的比等于c与d的比,即,那么这四条线段a,b,c,d叫做成比例线段,简称比例线段.黄金分割的定义:在线段AB上,点C把线段AB分成两条线段AC和BC,如果,那么称线段AB被点C黄金分割(goldensection),点C叫做线段AB的黄金分割点,AC与AB的比叫做黄金比.其中0.618.引理:平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例.相似多边形:对应角相等,对应边成比例的两个多边形叫做相似多边形.相似多边形:各角对应相等、各边对应成比例的两个多边形叫做相似多边形.相似比:相似多边形对应边的比叫做相似比.

二、比例的基本性质:1、若ad=bc(a,b,c,d都不等于0),那么.如果(b,d都不为0),那么ad=bc.2、合比性质:如果,那么.3、等比性质:如果==(b+d++n0),那么.4、更比性质:若那么.5、反比性质:若那么

三、求两条线段的比时要注意的问题:(1)两条线段的长度必须用同一长度单位表示,如果单位长度不同,应先化成同一单位,再求它们的比;(2)两条线段的比,没有长度单位,它与所采用的长度单位无关;(3)两条线段的长度都是正数,所以两条线段的比值总是正数.

四、相似三角形(多边形)的性质:相似三角形对应角相等,对应边成比例,相似三角形对应高的比、对应角平分线的比和对应中线的比都等于相似比.相似多边形的周长比等于相似比,面积比等于相似比的平方.

五、全等三角形的判定方法有:ASA,AAS,SAS,SSS,直角三角形除此之外再加HL

六、相似三角形的判定方法,判断方法有:1.三边对应成比例的两个三角形相似;2.两角对应相等的两个三角形相似;3.两边对应成比例且夹角相等;4.定义法:对应角相等,对应边成比例的两个三角形相似.5、定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似.在特殊的三角形中,有的相似,有的不相似.1、两个全等三角形一定相似.2、两个等腰直角三角形一定相似.3、两个等边三角形一定相似.4、两个直角三角形和两个等腰三角形不一定相似.

七、位似图形上任意一对对应点到位似中心的距离之比等于位似比.如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一个点,那么这样的两个图形叫做位似图形,这个点叫位似中心,这时的相似比又称为位似比.

八、常考知识点:1、比例的基本性质,黄金分割比,位似图形的性质.2、相似三角形的性质及判定.相似多边形的性质.

第五章数据的收集与处理

(1)普查的定义:这种为了一定目的而对考察对象进行的全面调查,称为普查.(2)总体:其中所要考察对象的全体称为总体.(3)个体:组成总体的每个考察对象称为个体(4)抽样调查:(samplinginvestigation):从总体中抽取部分个体进行调查,这种调查称为抽样调查.(5)样本(sample):其中从总体中抽取的一部分个体叫做总体的一个样本.(6)当总体中的个体数目较多时,为了节省时间、人力、物力,可采用抽样调查.为了获得较为准确的调查结果,抽样时要注意样本的代表性和广泛性.还要注意关注样本的大小.(7)我们称每个对象出现的次数为频数.而每个对象出现的次数与总次数的比值为频率.

数据波动的统计量:极差:指一组数据中数据与最小数据的差.方差:是各个数据与平均数之差的平方的平均数.标准差:方差的算术平方根.识记其计算公式.一组数据的极差,方差或标准差越小,这组数据就越稳定.还要知平均数,众数,中位数的定义.

刻画平均水平用:平均数,众数,中位数.刻画离散程度用:极差,方差,标准差.

常考知识点:1、作频数分布表,作频数分布直方图.2、利用方差比较数据的稳定性.3、平均数,中位数,众数,极差,方差,标准差的求法.3、频率,样本的定义

第六章证明

一、对事情作出判断的句子,就叫做命题.即:命题是判断一件事情的句子.一般情况下:疑问句不是命题.图形的作法不是命题.每个命题都有条件(condition)和结论(conclusion)两部分组成.条件是已知的事项,结论是由已知事项推断出的事项.一般地,命题都可以写成如果,那么的形式.其中如果引出的部分是条件,那么引出的部分是结论.要说明一个命题是一个假命题,通常可以举出一个例子,使它具备命题的条件,而不具有命题的结论.这种例子称为反例.

二、三角形内角和定理:三角形三个内角的和等于180度.1、证明三角形内角和定理的思路是将原三角形中的三个角凑到一起组成一个平角.一般需要作辅助线.既可以作平行线,也可以作一个角等于三角形中的一个角.2、三角形的外角与它相邻的内角是互为补角.

三、三角形的外角与它不相邻的内角关系是:(1)三角形的一个外角等于和它不相邻的两个内角的和.(2)三角形的一个外角大于任何一个和它不相邻的内角.

四、证明一个命题是真命题的基本步骤是:(1)根据题意,画出图形.(2)根据条件、结论,结合图形,写出已知、求证.(3)经过分析,找出由已知推出求证的途径,写出证明过程.在证明时需注意:(1)在一般情况下,分析的过程不要求写出来.(2)证明中的每一步推理都要有根据.如果两条直线都和第三条直线平行,那么这两条直线也相互平行.30.所对的直角边是斜边的一半.斜边上的高是斜边的一半.

常考知识点:1、三角形的内角和定理,及三角形外角定理.2两直线平行的性质及判定.命题及其条件和结论,真假命题的定义.

九年级数学期中上册知识点

三角形中位线的定理

三角形的中位线平行于三角形的第三边,并且等于第三边的一半。

【平行四边形的性质】

①平行四边形的对边相等;

②平行四边形的对角相等;

③平行四边形的对角线互相平分。

矩形的性质

①矩形具有平行四边形的一切性质;

②矩形的四个角都是直角;

③矩形的对角线相等.

正方形的判定与性质

1.判定方法:

(1)邻边相等的矩形;

(2)邻边垂直的菱形;

(3)对角线垂直的矩形;

(4)对角线相等的菱形;

2.性质:

(1)边:四边相等,对边平行;

(2)角:四个角都相等都是直角,邻角互补;

(3)对角线互相平分、垂直、相等,且每长对角线平分一组内角。

初三数学期中上册知识点

1、反比例函数的定义

2、用待定系数法求反比例函数的解析式

由于反比例函数

只有一个待定系数,因此,只要一组对应值,就可以求出k的值,从而确定反比例函数的表达式。

3、反比例函数的图像及画法

反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、第三象限或第二、第四象限,它们与原点对称,由于反比例函数中自变量函数中

所以它的图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。

反比例的画法分三个步骤:⑴列表;⑵描点;⑶连线。

再作反比例函数的图像时应注意以下几点:

①列表时选取的数值宜对称选取;

②列表时选取的数值越多,画的图像越精确;

③连线时,必须根据自变量大小从左至右(或从右至左)用光滑的曲线连接,切忌画成折线;

④画图像时,它的两个分支应全部画出,但切忌将图像与坐标轴相交。

221381
领取福利

微信扫码领取福利

双曲线的基本知识点大全

微信扫码分享