九年级数学知识点总结归纳
数学是考试的重点考察科目,数学知识的积累和解题方法的掌握,需要科学有效的复习方法,同时需要持之以恒的坚持。下面是小编给大家整理的九年级数学知识点总结,希望对大家有所帮助。
九年级数学知识点总结
单项式与多项式
仅含有一些数和字母的乘法包括乘方运算的式子叫做单项式单独的一个数或字母也是单项式。
单项式中的数字因数叫做这个单项式或字母因数的数字系数,简称系数。
当一个单项式的系数是1或—1时,“1”通常省略不写。
一个单项式中,所有字母的指数的和叫做这个单项式的次数。
如果在几个单项式中,不管它们的系数是不是相同,只要他们所含的字母相同,并且相同字母的指数也分别相同,那么,这几个单项式就叫做同类单项式,简称同类项所有的常数都是同类项。
1、多项式
有有限个单项式的代数和组成的式子,叫做多项式。
多项式里每个单项式叫做多项式的项,不含字母的项,叫做常数项。
单项式可以看作是多项式的特例
把同类单项式的系数相加或相减,而单项式中的字母的乘方指数不变。
在多项式中,所含的不同未知数的个数,称做这个多项式的元数经过合并同类项后,多项式所含单项式的个数,称为这个多项式的项数所含个单项式中次项的次数,就称为这个多项式的次数。
2、多项式的值
任何一个多项式,就是一个用加、减、乘、乘方运算把已知数和未知数连接起来的式子。
3、多项式的恒等
对于两个一元多项式fx、gx来说,当未知数x同取任一个数值a时,如果它们所得的值都是相等的,即fa=ga,那么,这两个多项式就称为是恒等的记为fx==gx,或简记为fx=gx。
性质1如果fx==gx,那么,对于任一个数值a,都有fa=ga。
性质2如果fx==gx,那么,这两个多项式的个同类项系数就一定对应相等。
4、一元多项式的根
一般地,能够使多项式fx的值等于0的未知数x的值,叫做多项式fx的根。
多项式的加、减法,乘法
1、多项式的加、减法
2、多项式的乘法
单项式相乘,用它们系数作为积的系数,对于相同的字母因式,则连同它的指数作为积的一个因式。
3、多项式的乘法
多项式与多项式相乘,先用一个多项式等每一项乘以另一个多项式的各项,再把所得的积相加。
常用乘法公式
公式I平方差公式
a+ba—b=a^2—b^2
两个数的和与这两个数的差的积等于这两个数的平方差。
九年级数学知识点总结归纳
圆的全章复习
圆的基础知识(1)圆的有关概念:
弦,弧,半圆,弓形,弓形高,等弧(隐含同圆等圆),弦心距,直径等。
(2)圆的确定
圆心决定位置,半径决定大小,不共线的三点确定一个圆。注意:作图(两边中垂线找交点),外心的位置,外心到三角形各顶点距离等
圆的对称性:轴对称,中心对称,旋转不变性
2.圆与其它图形
(1)点与圆三种
(2)直线与圆
相离dr
①一条直线与圆三种相切dr
相交d
r②两条直线与圆有关的角:圆周角,弦切角,圆外角等比例线段:圆幂定理等
③三条直线与圆即三角形与圆
三角形“四心”的区别:垂心意义三条高的交点性质等式积:位置锐角三角形:内部直角三角形:直角顶点钝角三角形:外部必在三角形内部ahabhbchc重心三条中线的交点同一中线上重心到顶点的距离是它到该顶点的对边距离的2倍外心
1.外接圆的圆心
2.三边中垂线的交点
3.内切圆的圆心
4.三条角平分线的交点到三角形三顶点距离相等锐角三角形:内部直角三角形:斜边中点钝角三角形:外部到三角形三边距离相等与顶点连线平分该内角必在三角形内部内心
④四条直线与圆为180内切四边形:对角之和的和相等外切四边形:两组对边
(3)两圆与直线
两圆外切时连心线过内公切线切点与该切线垂直。两圆内切时连心线过切点,垂直于过切点的切线。
两圆相交时,连心线垂直于公共弦,并且平分公共弦。
3.圆与圆的位置关系:
(1).掌握圆与圆的五种位置关系,类比于点与圆,直线与圆的位置关系,能通过两圆半径r1,r2及圆心距d三者的数量关系,判断两圆位置关系,或通过位置关系,判断数量关系。
(2).在数轴上表示当d在不同位置时,两圆的位置关系。
(3).在证明两圆的或多圆的图形时,常加的辅助线:公共弦、公切线;圆心距,连心线。
(4).当两圆相交时,连心线垂直平分公共弦。当两圆内切时,连心线垂直于公切线。当两圆外切时,连心线垂直于内公切线。
(5).公切线是指两个圆公共的切线,如果两圆在公切线同旁则称外公切线,如果两圆在公切线两旁则称内切线。公切线上两切点间线段的`长叫公切线长。(Rr)(外离时)
(6).如图内公切线长d(Rr)(外离、外切、相交时)外公切线长dd圆心距
R大圆半径
r小圆半径
R≥r
2222
内公切线Rr夹角一半sin
d的正弦值
外公切线Rr夹角一半sin
d的正弦值
(7).公切线条数①内含0条0dRr②内切1条dRr③相交2条RrdRr④外切3条dRr⑤外离4条dRr4,定理
(1)垂径定理及推论:过圆心;垂直弦;平分弦(非直径);平分优弧;平分劣弧;知2求3。
(2)圆心角,弦,弦心距,弧之间关系:同圆等圆中知1得3。
(3)与圆有关的角:圆心角,圆周角,弦切角,圆内角,圆外角,圆内接四边形外角,内对角,对角
1.一条弧所对圆周角等于它所对的圆心角的一它所对弧度数的一半半,圆周角的度数等于角相等;
2.同弧或等弧所对的圆周圆周角的性质相等的圆周角所对的弧也相等
3.直径所对的圆周角是直角,90的圆周角所对的弦是直角
(4)切线的判定、性质:
①判定:常见的证法连半径,证垂直,判断切线,“连垂切”或作垂直证d=r
②性质:若一条直线满足过圆心、过切点,垂直于切线中任意两条,可得另外一条。常见“切连垂”
(5)和圆有关的比例线段:
相交弦定理及推论,切割线定理及推论,圆幂定理
5.和圆有关的计算
(1)求线段
①直径、半径
②垂径定理:求弦长、弦心距、拱高
③切线长、公切线长(外公切线长,内公切线长)
④直角三角形内切圆半径
⑤任意三角形内切圆半径与面积、周长的关系
⑥等边三角形内切圆半径:外接圆半径=1:2
⑦与圆有关的比例线段、弦长、切线长等
(2)求角
圆心角,圆周角,弦切角,两切线夹角,公切线夹角
6.常见辅助线
半径、直径、弦心距、“切连垂”、连心线、公共弦、公切线
7.圆中常见图形
直角三角形等腰三角形圆内接四边形相似三角形
8.正多边形和圆
(n2)180正n边形的内角和为(n2)180有n个相等的内角,每个内角的度数为
n注意:正多边形的外交和始终为3609.弧长公式:lnR
180nR210.扇形面积公式:3
初三数学复习方法
一、回归课本,夯实基础,做好预习。
数学的基本概念、定义、公式,数学知识点之间的内在联系,基本的数学解题思路与方法,是复习的重中之重。回归课本,要先对知识点进行梳理,把教材上的每一个例题、习题再做一遍,确保基本概念、公式等牢固掌握,要稳扎稳打,不要盲目攀高,欲速则不达。复习课的内容多、时间紧。要提高复习效率,必须使自己的思维与老师的思维同步。而预习则是达到这一目的的重要途径。没有预习,听老师讲课,会感到老师讲的都重要,抓不住老师讲的重点;而预习了之后,再听老师讲课,就会在记忆上对老师讲的内容有所取舍,把重点放在自己还未掌握的内容上,提高学习效率。
二、提高课堂听课效率,多动脑,勤动手
初三的课只有两种形式:复习课和评讲课,到初三所有课都进入复习阶段,通过复习,学生要知道自己哪些知识点掌握的比较好,哪些知识点有待提高,因此在复习课之前一定要有自已的思考,这样听课的目的就明确了。现在学生手中都会有一些复习资料,在老师讲课之前,要把例题做一遍,做题中发现的难点,就是听课的重点;对预习中遇到的没有掌握好的旧知识,可进行查漏补缺,以减少听课过程中的困难,自己理解了的东西与老师的讲解进行比较、分析即可提高自己的数学思维;体会分析问题的`思路和解决问题的思想方法,坚持下去,就一定能举一反三,事半功倍。此外对于老师讲课中的难点,重点要作好笔记,笔记不是记录而是将上述听课中的要点,思维方法等作出简单扼要的记录,以便复习,消化,思考。
三、建立错题本,查漏补缺
初三复习,各类试题要做几十套,甚至上百套。特级教师提醒学生可以建立一个错题本,把平时做错的题系统的整理好,在上面写上评析和做错的原因,每过一段时间,就把“错题笔记”拿出来看一看。在看参考书时,也可以把精彩之处或做错的题目做上标记,以后再看这本书时就会有所侧重。查漏补缺的过程就是反思的过程。除了把不同的问题弄懂以外,还要学会“举一反三,融会贯通”,及时归纳总结。每次订正试卷或作业时,在错题旁边要写明做错的原因。
初三数学学习建议
培养良好的学习习惯
1制定计划。从而使学习目的明确,时间安排合理,不慌不忙,稳打稳扎,它是推动学生主动学习和克服困难的内在动力。但计划一定要切实可行,既有长远打算,又有短期安排,执行过程中严格要求自己,磨练学习意志。
2课前自学。这是上好新课,取得较好学习效果的基础。课前自学不仅能培养自学能力,而且能提高学习新课的兴趣,掌握学习的主动权。自学不能搞走过场,要讲究质量,力争在课前把教材弄懂,上课着重听老师讲思路,把握重点,突破难点,尽可能把问题解决在课堂上。
3专心上课。“学然后知不足”,这是理解和掌握基本知识、基本技能和基本方法的关键环节。课前自学过的学生上课更能专心听课,他们知道什么地方该详细听,什么地方可以一带而过,该记的地方才记下来,而不是全盘抄录,顾此失彼。
4及时复习。这是高效率学习的重要一环。通过反复阅读教材,多方面查阅有关资料,强化对基本概念知识体系的理解与记忆,将所学的新知识与有关旧知识联系起来,进行分析比效,一边复习一边将复习成果整理在笔记本上,使对所学的新知识由“懂”到“会”。
5独立作业。这是掌握独立思考,分析问题、解决问题,进一步加深对所学新知识的理解和对新技能的必要过程。这一过程也是对学生意志毅力的考验,通过作业练习使学生对所学知识由“会”到“熟”。
6解决疑难。这是指对独立完成作业过程中暴露出来对知识理解的错误,或由于思维受阻遗漏解答,通过点拨使思路畅通,补遗解答的过程。解决疑难一定要有锲而不舍的精神,做错的作业再做一遍。对错误的地方没弄清楚要反复思考,实在解决不了的要请教老师和同学,并经常把容易错的地方拿来复习强化,作适当的重复性练习,把从老师、同学处获得的东西消化变成自己的知识,长期坚持使对所学知识由“熟”到“活”。
7系统小结。这是通过积极思考,达到全面系统深刻地掌握知识和发展认识能力的重要环节。小结要在系统复习的基础上以教材为依据,参照笔记与资料,通过分析、综合、类比、概括,揭示知识间的内在联系,以达到对所学知识融会贯通的目的。经常进行多层次小结,能对所学知识由“活”到“悟”。
8课外学习。课外学习是课内学习的补充和继续,包括阅读课外书籍与报刊,参加学科竞赛与讲座,走访高年级同学或老师交流学习心得等。它不仅能丰富学生的文化科学知识,加深和巩固课内所学的知识,而且能够满足和发展学生的兴趣爱好,培养独立学习和工作的能力,激发求知欲与学习热情。
初三数学知识点总结
1.不在同一直线上的三点确定一个圆。
2.垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧
推论1 ①平分弦不是直径的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
推论2圆的两条平行弦所夹的弧相等
3.圆是以圆心为对称中心的中心对称图形
4.圆是定点的距离等于定长的点的集合
5.圆的内部可以看作是圆心的距离小于半径的点的集合
6.圆的外部可以看作是圆心的距离大于半径的点的集合
7.同圆或等圆的半径相等
8.到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
9.定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等
10.推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。
11定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角
12.①直线L和⊙O相交d
②直线L和⊙O相切d=r
③直线L和⊙O相离d>r
13.切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线
14.切线的性质定理圆的切线垂直于经过切点的半径
15.推论1经过圆心且垂直于切线的直线必经过切点
16.推论2经过切点且垂直于切线的直线必经过圆心
17.切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角
18.圆的外切四边形的两组对边的和相等外角等于内对角
19.如果两个圆相切,那么切点一定在连心线上
20.①两圆外离d>R+r ②两圆外切d=R+r
③.两圆相交R-rr
④.两圆内切d=R-rR>r ⑤两圆内含dr
21.定理相交两圆的连心线垂直平分两圆的公共弦
22.定理把圆分成nn≥3:
⑴依次连结各分点所得的多边形是这个圆的内接正n边形
⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形
23.定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
24.正n边形的每个内角都等于n-2×180°/n
25.定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
26.正n边形的面积Sn=pnrn/2 p表示正n边形的周长
27.正三角形面积√3a/4 a表示边长
28.如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×n-2180°/n=360°化为n-2k-2=4
29.弧长计算公式:L=n兀R/180
30.扇形面积公式:S扇形=n兀R^2/360=LR/2
31.内公切线长= d-R-r外公切线长= d-R+r
32.定理一条弧所对的圆周角等于它所对的圆心角的一半
33.推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
34.推论2半圆或直径所对的圆周角是直角;90°的圆周角所对的弦是直径
35.弧长公式l=ar a是圆心角的弧度数r >0扇形面积公式s=1/2lr