初一上学期数学知识点整理
学习初一数学知识点不逼一下自己,永远不知道自己有多优秀。细节决定命运,态度决定高度。下面是学习啦小编为大家精心推荐的初一上学期数学知识点,希望能够对您有所帮助
初一上学期数学知识点
一、方程的有关概念
1、方程:含有未知数的等式就叫做方程。
2、一元一次方程:只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程。例如: 1700+50x=1800,2(x+1.5x)=5等都是一元一次方程。
3、方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解。
注:
⑴方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程。
⑵方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论。
二、等式的性质
等式的性质(1):等式两边都加上(或减去)同个数(或式子),结果仍相等。
等式的性质(1)用式子形式表示为:如果a=b,那么a±c=b±c
等式的性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等,等式的性质(2)用式子形式表示为:如果a=b,那么ac=bc;如果a=b(c≠0),那么ca=cb
三、移项法则:把等式一边的某项变号后移到另一边,叫做移项。
四、去括号法则
1、括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同。
2、括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号改变。
五、解方程的一般步骤
1、去分母(方程两边同乘各分母的最小公倍数)
2、去括号(按去括号法则和分配律)
3、移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号)
4、合并(把方程化成ax=b(a≠0)形式)
5、系数化为1(在方程两边都除以未知数的系数a,得到方程的解x=a(b)。
六、用方程思想解决实际问题的一般步骤
1、审:审题,分析题中已知什么,求什么,明确各数量之间的关系。
2、设:设未知数(可分直接设法,间接设法)
3、列:根据题意列方程。
4、解:解出所列方程。
5、检:检验所求的解是否符合题意。
6、答:写出答案(有单位要注明答案)
初一上学期数学知识点整理
整式加减由数到式,承前启后,既是有理数的概括与抽象,又是整式乘除和其他代数式运算的基础,也是学习方程、不等式和函数的基础。为了体现本章知识的特殊地位与作用,具有以下几个特点:
1、充分体现由特殊到一般,由一般到特殊的思维过程,经历探索数量关系和变化规律的过程,渗透辩证唯物主义思想。
2、知识呈现过程尽量做到与学生已有生活经验密切联系,如皮球的弹跳高度,传数游戏等,发展学生应用数学的意识和能力。
3、让知识的发生、发展过程得以充分暴露,重视基本知识和基本技能的学习。
4、注意发挥例题和习题的教育功能。加强学科间的纵向联系并注意与其他学科的横向联系,扩充学生的知识面,注意适当插入一些开放题,培养发散思维,适时渗透美育和德育教育。
知识要点。整式的有关概念
(1)单项式:表示数与字母的乘积的代数式,叫做单项式,单独的一个数或一个字母也是单项式,如、2πr、a,0……都是单项式。
(2)多项式:几个单项式的和叫做多项式。
初一上册数学知识点
一、线段、射线、直线
※1、正确理解直线、射线、线段的概念以及它们的区别:
名称图形表示方法端点长度
直线直线AB(或BA)
直线l无端点无法度量
射线射线OM1个无法度量
线段线段AB(或BA)
线段l2个可度量长度
※2、直线公理:经过两点有且只有一条直线。
二、比较线段的长短
※1、线段公理:两点间线段最短;两之间线段的长度叫做这两点之间的距离。
※2、比较线段长短的两种方法:
①圆规截取比较法;
②刻度尺度量比较法。
※3、用刻度尺可以画出线段的中点,线段的和、差、倍、分;
用圆规可以画出线段的和、差、倍。
三、角的度量与表示
※1、角:有公共端点的两条射线组成的图形叫做角;
这个公共端点叫做角的顶点;
这两条射线叫做角的边。
※2、角的表示法:角的符号为“∠”
初一上册数学知识点归纳
1、某工作,甲单独干需用15小时完成,乙单独干需用12小时完成,若甲先干1小时、乙又单独干4小时,剩下的工作两人合作,问:再用几小时可全部完成任务?
2、某工厂计划26小时生产一批零件,后因每小时多生产5件,用24小时,不但完成了任务,而且还比原计划多生产了60件,问原计划生产多少零件?
3、某高校共有5个大餐厅和2个小餐厅。经过测试:同时开放1个大餐厅、2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2280名学生就餐。
(1)求1个大餐厅、1个小餐厅分别可供多少名学生就餐;
(2)若7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由。
4、甲乙两件衣服的成本共500元,商店老板为获取利润,决定将家服装按50%的利润定价,乙服装按40%的利润定价,在实际销售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求甲乙两件服装成本各是多少元?
初一上册数学必考知识点
本章的主要内容可以概括为有理数的概念与有理数的运算两部分。有理数的概念可以利用数轴来认识、理解,同时,利用数轴又可以把这些概念串在一起。有理数的运算是全章的重点。在具体运算时,要注意四个方面,一是运算法则,二是运算律,三是运算顺序,四是近似计算。
基础知识:
1、正数(positionnumber):大于0的数叫做正数。
2、负数(negationnumber):在正数前面加上负号"—"的数叫做负数。
3、0既不是正数也不是负数。
4、有理数(rationalnumber):正整数、负整数、0、正分数、负分数都可以写成分数的形式,这样的数称为有理数。
5、数轴(numberaxis):通常,用一条直线上的点表示数,这条直线叫做数轴。
数轴满足以下要求:
(1)在直线上任取一个点表示数0,这个点叫做原点(origin);
(2)通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;
(3)选取适当的长度为单位长度。
6、相反数(oppositenumber):绝对值相等,只有负号不同的两个数叫做互为相反数。
7、绝对值(absolutevalue)一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。记做|a|。由绝对值的定义可得:|a—b|表示数轴上a点到b点的距离。一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小。
8、有理数加法法则
(1)同号两数相加,取相同的符号,并把绝对值相加。
(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。
(3)一个数同0相加,仍得这个数。
加法交换律:有理数的加法中,两个数相加,交换加数的位置,和不变。表达式:a+b=b+a。
加法结合律:有理数的加法中,三个数相加,先把前两个数相加或者先把后两个数相加,和不变。
表达式:(a+b)+c=a+(b+c)
9、有理数减法法则:减去一个数,等于加这个数的相反数。表达式:a—b=a+(—b)
10、有理数乘法法则
两数相乘,同号得正,异号得负,并把绝对值相乘。
任何数同0相乘,都得0。
乘法交换律:一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等。表达式:ab=ba
乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。表达式:(ab)c=a(bc)
乘法分配律:一般地,一个数同两个的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
表达式:a(b+c)=ab+ac
11、倒数
1除以一个数(零除外)的商,叫做这个数的倒数。如果两个数互为倒数,那么这两个数的积等于1。
12、有理数除法法则:两数相除,同号得负,异号得正,并把绝对值相除。0除以任何一个不等于0的数,都得0。
13、有理数的乘方:求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂(power)。an中,a叫做底数(basenumber),n叫做指数(exponent)。
根据有理数的乘法法则可以得出:负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何正整数次幂都是0。
14、有理数的混合运算顺序
(1)"先乘方,再乘除,最后加减"的顺序进行;
(2)同级运算,从左到右进行;
(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
15、科学技术法:把一个大于10的数表示成a?10n的形式(其中a是整数数位只有一位的数(即0
16、近似数(approximatenumber):
17、有理数可以写成m/n(m、n是整数,n≠0)的形式。另一方面,形如m/n(m、n是整数,n≠0)的数都是有理数。所以有理数可以用m/n(m、n是整数,n≠0)表示。
拓展知识:
1、数集:把一些数放在一起,就组成一个数的集合,简称数集。
(1)所有有理数组成的数集叫做有理数集;
(2)所有的整数组成的数集叫做整数集。
2、任何有理数都可以用数轴上的一个点来表示,体现了数形结合的数学思想。
3、根据绝对值的几何意义知道:|a|≥0,即对任何有理数a,它的绝对值是非负数。
4、比较两个有理数大小的方法有:
(1)根据有理数在数轴上对应的点的位置直接比较;
(2)根据规定进行比较:两个正数;正数与零;负数与零;正数与负数;两个负数,体现了分类讨论的数学思想;
(3)做差法:a—b>0——a>b;
(4)做商法:a/b>1,b>0——a>b。