新第一范文网:谁伤害过你,谁击溃过你,都不重要。重要的是谁让你重现笑容。

2023高考数学知识点(复习)

嘉欣 分享 时间: 加入收藏 我要投稿 点赞

2023高考数学知识点(复习)

怎么学习数学好?数学的学习,需要大家对知识点进行总结,这样大家效率地提高自己的学习成绩,以下是小编为大家带来的2023高考数学知识点(复习),欢迎参阅呀!

2023高考数学知识点

2023高考数学知识点(复习)

等比数列

(1)等比数列的符号特征(全正或全负或一正一负),等比数列的首项、公比与等比数列的单调性.

(2)两等比数列对应项积(商)组成的新数列仍成等比数列.

(3)“首大于1”的正值递减等比数列中,前项积的大值是所有大于或等于1的项的积;“首小于1”的正值递增等比数列中,前项积的小值是所有小于或等于1的项的积;

(4)有限等比数列中,奇数项和与偶数项和的存在必然联系,由数列的总项数是偶数还是奇数决定.若总项数为偶数,则“偶数项和”=“奇数项和”与“公比”的积;若总项数为奇数,则“奇数项和“首项”加上“公比”与“偶数项和”积的和.

(5)并非任何两数总有等比中项.仅当实数同号时,实数存在等比中项.对同号两实数的等比中项不仅存在,而且有一对.也就是说,两实数要么没有等比中项(非同号时),如果有,必有一对(同号时).在遇到三数或四数成等差数列时,常优先考虑选用“中项关系”转化求解.

(6)判定数列是否是等比数列的方法主要有:定义法、中项法、通项法、和式法(也就是说数列是等比数列的充要条件主要有这四种形式).

1.集合与逻辑:集合的逻辑与运算(一般出现在高考卷的第一道选择题)、简易逻辑、充要条件

2.函数:映射与函数、函数解析式与定义域、值域与值、反函数、三大性质、函数图象、指数函数、对数函数、函数的应用

3.数列:数列的有关概念、等差数列、等比数列、数列求通项、求和

4.三角函数:有关概念、同角关系与诱导公式、和差倍半公式、求值、化简、证明、三角函数的图像及其性质、应用

5.平面向量:初等运算、坐标运算、数量积及其应用

6.不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式(经常出现在大题的选做题里)、不等式的应用

7.直线与圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系

8.圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用

9.直线、平面、简单几何体:空间直线、直线与平面、平面与平面、棱柱、棱锥、球、空间向量

10.排列、组合和概率:排列、组合应用题、二项式定理及其应用

11.概率与统计:概率、分布列、期望、方差、抽样、正态分布

12.导数:导数的概念、求导、导数的应用

13.复数:复数的概念与运算

圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标

圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0

抛物线标准方程y2=2pxy2=-2p__2=2pyx2=-2py

直棱柱侧面积S=c__h斜棱柱侧面积S=c'__h

正棱锥侧面积S=1/2c__h'正棱台侧面积S=1/2(c+c')h'

圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi__r2

圆柱侧面积S=c__h=2pi__h圆锥侧面积S=1/2__c__l=pi__r__l

弧长公式l=a__ra是圆心角的弧度数r>0扇形面积公式s=1/2__l__r

锥体体积公式V=1/3__S__H圆锥体体积公式V=1/3__pi__r2h

斜棱柱体积V=S'L注:其中,S'是直截面面积,L是侧棱长

柱体体积公式V=s__h圆柱体V=pi__r2h

等差数列的基本性质

公差为d的等差数列,各项同加一数所得数列仍是等差数列,其公差仍为d.

公差为d的等差数列,各项同乘以常数k所得数列仍是等差数列,其公差为kd.

若{an}{bn}为等差数列,则{an±bn}与{kan+bn}(k、b为非零常数)也是等差数列.

对任何m、n,在等差数列中有:an=am+(n-m)d(m、n∈N+),特别地,当m=1时,便得等差数列的通项公式,此式较等差数列的通项公式更具有一般性.

一般地,当m+n=p+q(m,n,p,q∈N+)时,am+an=ap+aq.

公差为d的等差数列,从中取出等距离的项,构成一个新数列,此数列仍是等差数列,其公差为kd(k为取出项数之差).

下表成等差数列且公差为m的项ak.ak+m.ak+2m.....(k,m∈N+)组成公差为md的等差数列。

在等差数列中,从第二项起,每一项(有穷数列末项除外)都是它前后两项的等差中项.

当公差d>0时,等差数列中的数随项数的增大而增大;当d<0时,等差数列中的数随项数的减少而减小;d=0时,等差数列中的数等于一个常数.

一次函数的定义

一次函数,也作线性函数,在x,y坐标轴中可以用一条直线表示,当一次函数中的一个变量的值确定时,可以用一元一次方程确定另一个变量的值。

函数的表示方法

列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。

解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。

图象法:形象直观,但只能近似地表达两个变量之间的函数关系。

一次函数的性质

一般地,形如y=kx+b(k,b是常数,且k≠0),那么y叫做x的一次函数,当b=0时,y=kx+b即y=kx,所以说正比例函数是一种特殊的一次函数

注:一次函数一般形式y=kx+b(k不为0)

a)k不为0

b)x的指数是1

c)b取任意实数

一次函数y=kx+b的图像是经过(0,b)和(-b/k,0)两点的一条直线,我们称它为直线y=kx+b,它可以看做直线y=kx平移|b|个单位长度得到。(当b>0时,向上平移;b<0时,向下平移)

空间几何体的三视图

定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)

注:

正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;

俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;

侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。

人教版高三数学知识点归纳

符合一定条件的动点所形成的图形,或者说,符合一定条件的点的全体所组成的集合,叫做满足该条件的点的轨迹。

轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯粹性(也叫做必要性);凡不在轨迹上的点都不符合给定的条件,也就是符合给定条件的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性)。

【轨迹方程】就是与几何轨迹对应的代数描述。

一、求动点的轨迹方程的基本步骤

1、建立适当的坐标系,设出动点M的坐标;

2、写出点M的集合;

3、列出方程=0;

4、化简方程为最简形式;

5、检验。

二、求动点的轨迹方程的常用方法:求轨迹方程的'方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。

1、直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。

2、定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。

3、相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。

4、参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。

5、交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。

直译法:求动点轨迹方程的一般步骤

①建系——建立适当的坐标系;

②设点——设轨迹上的任一点P(x,y);

③列式——列出动点p所满足的关系式;

④代换——依条件的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简;

⑤证明——证明所求方程即为符合条件的动点轨迹方程。

高三数学知识点梳理

第一:高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节。

主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析就是二次方程的分布的问题,这是第一个板块。

第二:平面向量和三角函数。

重点考察三个方面:一个是划减与求值,第一,重点掌握公式,重点掌握五组基本公式。第二,是三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质,第三,正弦定理和余弦定理来解三角形。难度比较小。

第三:数列。

数列这个板块,重点考两个方面:一个通项;一个是求和。

第四:空间向量和立体几何。

在里面重点考察两个方面:一个是证明;一个是计算。

第五:概率和统计。

这一板块主要是属于数学应用问题的范畴,当然应该掌握下面几个方面,第一……等可能的概率,第二……事件,第三是独立事件,还有独立重复事件发生的概率。

第六:解析几何。

这是我们比较头疼的问题,是整个试卷里难度比较大,计算量的题,当然这一类题,我总结下面五类常考的'题型,包括第一类所讲的直线和曲线的位置关系,这是考试最多的内容。考生应该掌握它的通法,第二类我们所讲的动点问题,第三类是弦长问题,第四类是对称问题,这也是2008年高考已经考过的一点,第五类重点问题,这类题时往往觉得有思路,但是没有答案,当然这里我相等的是,这道题尽管计算量很大,但是造成计算量大的原因,往往有这个原因,我们所选方法不是很恰当,因此,在这一章里我们要掌握比较好的算法,来提高我们做题的准确度,这是我们所讲的第六大板块。

第七:押轴题。

考生在备考复习时,应该重点不等式计算的方法,虽然说难度比较大,我建议考生,采取分部得分整个试卷不要留空白。这是高考所考的七大板块核心的考点。

高考数学常考必考题型

第一,函数与导数

主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。

第二,平面向量与三角函数、三角变换及其应用

这一部分是高考的重点但不是难点,主要出一些基础题或中档题。

第三,数列及其应用

这部分是高考的重点而且是难点,主要出一些综合题。

第四,不等式

主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。是高考的重点和难点。

第五,概率和统计

这部分和我们的生活联系比较大,属应用题。

第六,空间位置关系的定性与定量分析,主要是证明平行或垂直,求角和距离。

主要考察对定理的熟悉程度、运用程度。

第七,解析几何

高考的难点,运算量大,一般含参数。

高考对数学基础知识的考查,既全面又突出重点,扎实的数学基础是成功解题的关键。

针对数学高考强调对基础知识与基本技能的考查我们一定要全面、系统地复习高中数学的基础知识,正确理解基本概念,正确掌握定理、原理、法则、公式、并形成记忆,形成技能。以不变应万变。

高中生数学成绩提高的方法

一、紧跟老师思路

我们预习的时候已经把老师将要讲什么样的内容搞清楚了,这样就可以带着强烈的求知欲去听课。因为有强烈的求知欲,听课的效果会好很多。在这个时候,要尽可能排除一切干扰因素,紧跟老师的讲课思路。当遇到自己没有听明白的地方,先记录下来,不要因此而影响后面的听讲。这些疑难问题在课后再向老师或同学请教。

二、学会提炼重点

数学学科因其本身具有一定的枯燥性,所以老师在课堂上讲课的时候都会尽可能地增加趣味性。但是这些趣味的东西有的时候不是重点,那么这就需要你能够抓住并提炼出本节课的重点是什么。

三、大胆表达看法

老师会在教学过程当中与学生进行积极的互动。哪怕老师问一句:“听懂了吗?”,这也是互动形式的一种。在这个时候,要学会大胆地表达自己的看法,当自己确实没有听明白的时候,要大胆说“不”,这样老师将依据班级的整体情况做出决定,究竟是再认真讲一遍还是为你课后辅导。这样实际上你就获得了更多被辅导的机会。

四、适当记录笔记

有专家认为课堂上记笔记会影响听课效果,虽然这种说法不是全对,但是也有其道理。大家在做笔记的时候一定不要老师说什么就记什么,也不要一味地追求工整。其尺度在于:是否对自己有益,是否自己能看懂。

221381
领取福利

微信扫码领取福利

2023高考数学知识点(复习)

微信扫码分享