编写教案有助于吸引学生的注意力,激发他们的学习兴趣,提升教学效果。接下来给大家分享高一数学教案案例,希望对大家写高一数学教案案例有所帮助。
高一数学教案案例篇1
教学准备
教学目标
知识目标
等差数列定义等差数列通项公式
能力目标
掌握等差
数列定义等差数列通项公式
情感目标
培养学生的观察、推理、归纳能力
教学重难点
教学重点
等差数列的概念的理解与掌握
等差数列通项公式推导及应用教学难点等差数列“等差”的理解、把握和应用
教学过程
由__《红高粱》主题曲“酒神曲”引入等差数列定义
问题:多媒体演示,观察——发现
一、等差数列定义:
一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。这个常数叫做等差数列的公差,通常用字母d表示。
例1:观察下面数列是否是等差数列:…。
二、等差数列通项公式:
已知等差数列{an}的首项是a1,公差是d。
则由定义可得:
a2—a1=d
a3—a2=d
a4—a3=d
an—an—1=d
即可得:
an=a1+(n—1)d
例2已知等差数列的首项a1是3,公差d是2,求它的通项公式。
分析:知道a1,d,求an。代入通项公式
解:∵a1=3,d=2
∴an=a1+(n—1)d
=3+(n—1)×2
=2n+1
例3求等差数列10,8,6,4…的第20项。
分析:根据a1=10,d=—2,先求出通项公式an,再求出a20
解:∵a1=10,d=8—10=—2,n=20
由an=a1+(n—1)d得
∴a20=a1+(n—1)d
=10+(20—1)×(—2)
=—28
例4:在等差数列{an}中,已知a6=12,a18=36,求通项an。
分析:此题已知a6=12,n=6;a18=36,n=18分别代入通项公式an=a1+(n—1)d中,可得两个方程,都含a1与d两个未知数组成方程组,可解出a1与d。
解:由题意可得
a1+5d=12
a1+17d=36
∴d=2a1=2
∴an=2+(n—1)×2=2n
练习
1。判断下列数列是否为等差数列:
①23,25,26,27,28,29,30;
②0,0,0,0,0,0,…
③52,50,48,46,44,42,40,35;
④—1,—8,—15,—22,—29;
答案:①不是②是①不是②是
等差数列{an}的前三项依次为a—6,—3a—5,—10a—1,则a等于()
A、1B、—1C、—1/3D、5/11
提示:(—3a—5)—(a—6)=(—10a—1)—(—3a—5)
3、在数列{an}中a1=1,an=an+1+4,则a10=。
提示:d=an+1—an=—4
教师继续提出问题
已知数列{an}前n项和为……
高一数学教案案例篇2
【内容与解析】
本节课要学的内容有函数的概念指的是函数的概念及符号的理解,理解它关键就是能用集合与对应的语言刻画函数,体会对应关系在刻画函数概念中的作用。学生已经学过了集合并且初中对函数的概念已经作了介绍,本节课的内容函数的概念就是在此基础上的发展的。由于它还与基本初等函数和函数模型等内容有必要的联系,所以在本学科有着很重要的地位,是学习后面知识的基础,是本学科的核心内容。教学的重点是函数的概念,函数的三要素,所以解决重点的关键是通过实例领悟构成函数的三个要素;会求一些简单函数的定义域和值域。
【教学目标与解析】
1、教学目标
(1)理解函数的概念;
(2)了解区间的概念;
2、目标解析
(1)理解函数的概念就是指能用集合与对应的语言刻画函数,体会对应关系在刻画函数概念中的作用;
(2)了解区间的概念就是指能够体会用区间表示数集的意义和作用;
【问题诊断分析】
在本节课的教学中,学生可能遇到的问题是函数的概念及符号的理解,产生这一问题的原因是:函数本身就是一个抽象的概念,对学生来说一个难点。要解决这一问题,就要在通过从实际问题中抽象概况函数的概念,培养学生的抽象概况能力,其中关键是理论联系实际,把抽象转化为具体。
【教学过程】
问题1:一枚炮弹发射后,经过26s落到地面击中目标.炮弹的射高为845m,且炮弹距离地面的`高度h(单位:m)随时间t(单位:s)变化的规律是:h=130t-5t2.
1.1这里的变量t的变化范围是什么?变量h的变化范围是什么?试用集合表示?
1.2高度变量h与时间变量t之间的对应关系是否为函数?若是,其自变量是什么?
设计意图:通过以上问题,让学生正确理解让学生体会用解析式或图象刻画两个变量之间的依赖关系,从问题的实际意义可知,在t的变化范围内任给一个t,按照给定的对应关系,都有唯一的一个高度h与之对应。
问题2:分析教科书中的实例(2),引导学生看图并启发:在t的变化t按照给定的图象,都有唯一的一个臭氧层空洞面积S与之相对应。
问题3:要求学生仿照实例(1)、(2),描述实例(3)中恩格尔系数和时间的关系。
设计意图:通过这些问题,让学生理解得到函数的定义,培养学生的归纳、概况的能力。
问题4:上述三个实例中变量之间的关系都是函数,那么从集合与对应的观点分析,函数还可以怎样定义?
4.1在一个函数中,自变量x和函数值y的变化范围都是集合,这两个集合分别叫什么名称?
4.2在从集合A到集合B的一个函数f:A→B中,集合A是函数的定义域,集合B是函数的值域吗?怎样理解f(x)=1,x∈R?
4.3一个函数由哪几个部分组成?如果给定函数的定义域和对应关系,那么函数的值域确定吗?两个函数相等的条件是什么?
【例题】:
例1求下列函数的定义域
分析:求定义域就是使式子有意义的x的取值所构成的集合;定义域一定是集合!
例2已知函数
分析:理解函数f(x)的意义
例3下列函数中哪个与函数相等?
例4在下列各组函数中与是否相等?为什么?
分析:
(1)两个函数相等,要求定义域和对应关系都一致;
(2)用x还是用其它字母来表示自变量对函数实质而言没有影响.
【课堂目标检1测】
教科书第19页1、2.
【课堂小结】
1、理解函数的定义,函数的三要素,会球简单的函数的定义域和函数值;
2、理解区间是表示数集的一种方法,会把不等式转化为区间。
高一数学教案案例篇3
说课的内容是《对数函数》,现就教材、教法、学法、教学程序、板书五个方面进行说明。恳请在座的各位专家、老师批评指正。
一、说教材
1、教材的地位、作用及编写意图
《对数函数》出现在职业高中数学第一册第四章第八节。函数是高中数学的核心,对数函数是函数的重要分支,对数函数的知识在数学和其他许多学科中有着广泛的应用;学生已经学习了对数、反函数以及指数函数等内容,这为过渡到本节的学习起着铺垫作用;“对数函数”这节教材,指出对数函数和指数函数互为反函数,反映了两个变量的相互关系,蕴含了函数与方程的数学思想与数学方法,是以后数学学习中不可缺少的部分,也是高考的必考内容。
2、教学目标的确定及依据。
依据教学大纲和学生获得知识、培养能力及思想教育等方面的要求:我制定了如下教育教学目标:
(1)知识目标:理解对数函数的概念、掌握对数函数的图象和性质。
(2)能力目标:培养学生自主学习、综合归纳、数形结合的能力。
(3)德育目标:培养学生对待知识的科学态度、勇于探索和创新的精神。
(4)情感目标:在民主、和谐的教学气氛中,促进师生的情感交流。
3、教学重点、难点及关键
重点:对数函数的概念、图象和性质;
难点:利用指数函数的图象和性质得到对数函数的图象和性质;
关键:抓住对数函数是指数函数的反函数这一要领。
二、说教法
教学过程是教师和学生共同参与的过程,启发学生自主性学习,充分调动学生的积极性、主动性;有效地渗透数学思想方法,提高学生素质。根据这样的原则和所要完成的教学目标,并为激发学生的学习兴趣,我采用如下的教学方法:
(1)启发引导学生思考、分析、实验、探索、归纳。
(2)采用“从特殊到一般”、“从具体到抽象”的方法。
(3)体现“对比联系”、“数形结合”及“分类讨论”的思想方法。
(4)多媒体演示法。
三、说学法
教给学生方法比教给学生知识更重要,本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导:
(1)对照比较学习法:学习对数函数,处处与指数函数相对照。
(2)探究式学习法:学生通过分析、探索、得出对数函数的定义。
(3)自主性学习法:通过实验画出函数图象、观察图象自得其性质。
(4)反馈练习法:检验知识的应用情况,找出未掌握的内容及其差距。
这样可发挥学生的主观能动性,有利于提高学生的各种能力。
四、说教学程序
1、复习导入
(1)复习提问:什么是对数?如何求反函数?指数函数的图象和性质如何?学生回答,并利用课件展示一下指数函数的图象和性质。
设计意图:设计的提问既与本节内容有密切关系,又有利于引入新课,为学生理解新知清除了障碍,有意识地培养学生分析问题的能力。
(2)导言:指数函数有没有反函数?如果有,如何求指数函数的反函数?它的反函数是什么?设计意图:这样的导言可激发学生求知欲,使学生渴望知道问题的答案。
2、认定目标(出示教学目标)
3、导学达标
按"教师为主导,学生为主体,训练为主线”的原则,安排师生互动活动.
(1)对数函数的概念
引导学生从对数式与指数式的关系及反函数的概念进行分析并推导出,指数函数有反函数,并且y=ax(a>0且a≠1)的反函数是y=logax,见课件。把函数y=logax叫做对数函数,其中a>0且a≠1。从而引出对数函数的概念,展示课件。
设计意图:对数函数的概念比较抽象,利用已经学过的知识逐步分析,这样引出对数函数的概念过渡自然,学生易于接受。
因为对数函数是指数函数的反函数,让学生比较它们的定义域、值域、对应法则及图象间的关系,培养学生参与意识,通过比较充分体现指数函数及对数函数的内在联系。
(2)对数函数的图象
提问:同指数函数一样,在学习了函数的定义之后,我们要画函数的图象,应如何画对数函数的图象呢?让学生思考并回答,用描点法画图。教师肯定,我们每学习一种新的函数都可以根据函数的解析式,列表、描点画图。再考虑一下,我们还可以用什么方法画出对数函数的图象呢?
让学生回答,画出指数函数关于直线y=x对称的图象,就是对数函数的图象。
教师总结:我们画对数函数的图象,既可用描点法,也可用图象变换法,下边我们利用两种方法画对数函数的图象。
方法一(描点法)首先列出x,y(y=log2x,y=logx)值的对应表,因为对数函数的定义域为x>0,因此可取x=•••,,,1,2,4,8•••,请计算对应的y值,然后在坐标系内描点、画出它们的图象.
方法二(图象变换法)因为对数函数和指数函数互为反函数,图象关于直线y=x对称,所以只要画出y=ax的图象关于直线y=x对称的曲线,就可以得到y=logax.的图象。学生动手做实验,先描出y=2x的图象,画出它关于直线y=x对称的曲线,它就是y=log2x的图象;类似的从y=()x的图象画出y=logx的图象,再出示课件,教师加以解释。
设计意图:用这种对称变换的方法画函数的图象,可以加深和巩固学生对互为反函数的两个函数之间的认识,便于将对数函数的图象和性质与指数函数的图象和性质对照,但使用描点法画函数图象更为方便,两种方法可同时进行,分析画法之后,可让学生自由选择画法。
这样可以充分调动学生自主学习的积极性。
(3)对数函数的性质
在理解对数函数定义的基础上,掌握对数函数的图象和性质是本节的重点,关键在于抓住对数函数是指数函数的反函数这一要领,讲对数函数的性质,可先在同一坐标系内画出上
述两个对数函数的图象,根据图象让学生列表分析它们的图象特征和性质,然后出示课件,教师补充。
作了以上分析之后,再分a>1与0<a<1两种情况列出对数函数图象和性质表,体现了从“特殊到一般”、“从具体到抽象”的方法。出示课件并进行详细讲解,把对数函数图象和性质列成一个表以便让学生对比着记忆。
设计意图:这种讲法既严谨又直观易懂,还能让学生主动参与教学过程,对培养学生的创新能力有帮助,学生易于接受易于掌握,而且利用表格,可以突破难点。
由于对数函数和指数函数互为反函数,它们的定义域与值域正好互换,为了揭示这两种函数之间的内在联系,列出指数函数与对数函数对照表(见课件)
设计意图:通过比较对照的方法,学生更好地掌握两个函数的定义、图象和性质,认识两个函数的内在联系,提高学生对函数思想方法的认识和应用意识。
4、巩固达标(见课件)
这一训练是为了培养学生利用所学知识解决实际问题的能力,通过这个环节学生可以加深对本节知识的理解和运用,并从讲解过程中找出所涉及的知识点,予以总结。充分体现“数形结合”和“分类讨论”的思想。
5、反馈练习(见课件)
习题是对学生所学知识的反馈过程,教师可以了解学生对知识掌握的情况。
6、归纳总结(见课件)
引导学生对主要知识进行回顾,使学生对本节有一个整体的把握,因此,从三方面进行总结:对数函数的概念、对数函数的图象和性质、比较对数值大小的方法。
7、课外作业:(1)完成P178A组1、2、3题
(2)当底数a>1与0<a<1时,底数不同,对数函数图象有什么持点?
五、说板书
板书设计为表格式(见课件),这样的板书简明清楚,重点突出,加深学生对图象和性质的理解和掌握,便于记忆,有利于提高教学效果。
高一数学教案案例篇4
【考点阐述】
两角和与差的正弦、余弦、正切.二倍角的正弦、余弦、正切.
【考试要求】
(3)掌握两角和与两角差的正弦、余弦、正切公式;掌握二倍角的正弦、余弦、正切公式.
(4)能正确运用三角公式,进行简单三角函数式的化简、求值和恒等式证明.
【考题分类】
(一)选择题(共5题)
1.(海南宁夏卷理7)=()
A.B.C.2D.
解:,选C。
2.(山东卷理5文10)已知cos(α-)+sinα=
(A)-(B)(C)-(D)
解:,,
3.(四川卷理3文4)()
(A)(B)(C)(D)
【解】:∵
故选D;
【点评】:此题重点考察各三角函数的关系;
4.(浙江卷理8)若则=()
(A)(B)2(C)(D)
解析:本小题主要考查三角函数的求值问题。由可知,两边同时除以得平方得,解得或用观察法.
5.(四川延考理5)已知,则()
(A)(B)(C)(D)
解:,选C
(二)填空题(共2题)
1.(浙江卷文12)若,则_________。
解析:本小题主要考查诱导公式及二倍角公式的应用。由可知,;而。答案:
2.(上海春卷6)化简:.
(三)解答题(共1题)
1.(上海春卷17)已知,求的值.
[解]原式……2分
.……5分
又,,……9分
.……12分文章
高一数学教案案例篇5
一、教学目标
1、知识与技能
(1)通过实物操作,增强学生的直观感知。
(2)能根据几何结构特征对空间物体进行分类。
(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。
(4)会表示有关于几何体以及柱、锥、台的分类。
2、过程与方法
(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。
(2)让学生观察、讨论、归纳、概括所学的知识。
3、情感态度与价值观
(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。
(2)培养学生的空间想象能力和抽象括能力。
二、教学重点、难点
重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。难点:柱、锥、台、球的结构特征的概括。
三、教学用具
(1)学法:观察、思考、交流、讨论、概括。
(2)实物模型、投影仪四、教学思路
(一)创设情景,揭示课题
1、教师提出问题:在我们生活周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?引导学生回忆,举例和相互交流。教师对学生的活动及时给予评价。
2、所举的建筑物基本上都是由这些几何体组合而成的,(展示具有柱、锥、台、球结构特征的空间物体),你能通过观察。根据某种标准对这些空间物体进行分类吗?这是我们所要学习的内容。
(二)、研探新知
1、引导学生观察物体、思考、交流、讨论,对物体进行分类,分辩棱柱、圆柱、棱锥。
2、观察棱柱的几何物件以及投影出棱柱的图片,它们各自的特点是什么?它们的共同特点是什么?
3、组织学生分组讨论,每小组选出一名同学发表本组讨论结果。在此基础上得出棱柱的主要结构特征。
(1)有两个面互相平行;
(2)其余各面都是平行四边形;
(3)每相邻两上四边形的公共边互相平行。概括出棱柱的概念。
4、教师与学生结合图形共同得出棱柱相关概念以及棱柱的表示。
5、提出问题:各种这样的棱柱,主要有什么不同?可不可以根据不同对棱柱分类?
请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的?
6、以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。
7、让学生观察圆柱,并实物模型演示,如何得到圆柱,从而概括出圆标的概念以及相关的概念及圆柱的表示。
8、引导学生以类似的方法思考圆锥、圆台、球的结构特征,以及相关概念和表示,借助实物模型演示引导学生思考、讨论、概括。
9、教师指出圆柱和棱柱统称为柱体,棱台与圆台统称为台体,圆锥与棱锥统称为锥体。
10、现实世界中,我们看到的物体大多由具有柱、锥、台、球等几何结构特征的物体组合而成。请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的?
(三)质疑答辩,排难解惑,发展思维,教师提出问题,让学生思考。
1、有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱(举反例说明,如图)
2、棱柱的何两个平面都可以作为棱柱的底面吗?
3、课本P8,习题1.1A组第1题。
4、圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转?
5、棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥呢?
高一数学教案案例篇6
教学类型:探究研究型
设计思路:通过一系列的猜想得出德.摩根律,但是这个结论仅仅是猜想,数学是一门科学,所以需要论证它的正确性,因此本节通过剖析维恩图的四部分来验证猜想的正确性,并对德摩根律进行简单的应用,因此我们制作了本微课.
教学过程:
一、片头
内容:现在让我们一起来学习《集合的运算——自己探索也能发现的&39;数学规律(第二讲)》。
二、正文讲解
1.引入:牛顿曾说过:“没有大胆的猜测,就做不出伟大的发现。”
上节课老师和大家学习了集合的运算,得出了一个有趣的规律。课后,你举例验证了这个规律吗?
那么,这个规律是偶然的,还是一个恒等式呢?
2.规律的验证:
试用集合A,B的交集、并集、补集分别表示维恩图中1,2,3,4及彩色部分的集合,通过剖析维恩图来验证猜想的正确性使用
3.抽象概括:通过我们的观察和验证,我们发现这个规律是一个恒等式。
而这个规律就是180年前的英国数学家德摩根发现的。
为了纪念他,我们将它称为德摩根律。
原来我们通过自己的探索也能发现这么伟大的数学规律。
4.例题应用:使用例题形式,将的德摩根定律的结论加以应用,让学生更加熟悉集合的运算
三、结尾
通过这在道题的解答,我们发现德摩根律为解答集合运算问题提供了更为简便的方法。
希望你在今后的学习中,勇于探索,发现更多有趣的规律。
高一数学教案案例篇7
教学目标
1、了解函数的单调性和奇偶性的概念,把握有关证实和判定的基本方法。
(1)了解并区分增函数,减函数,单调性,单调区间,奇函数,偶函数等概念。
(2)能从数和形两个角度熟悉单调性和奇偶性。
(3)能借助图象判定一些函数的单调性,能利用定义证实某些函数的单调性;能用定义判定某些函数的奇偶性,并能利用奇偶性简化一些函数图象的绘制过程。
2、通过函数单调性的证实,提高学生在代数方面的推理论证能力;通过函数奇偶性概念的形成过程,培养学生的观察,归纳,抽象的能力,同时渗透数形结合,从非凡到一般的数学思想。
3、通过对函数单调性和奇偶性的理论研究,增学生对数学美的体验,培养乐于求索的精神,形成科学,严谨的研究态度。
教学建议
一、知识结构
(1)函数单调性的概念。包括增函数。减函数的定义,单调区间的概念函数的单调性的判定方法,函数单调性与函数图像的关系。
(2)函数奇偶性的概念。包括奇函数。偶函数的定义,函数奇偶性的判定方法,奇函数。偶函数的图像。
二、重点难点分析
(1)本节教学的重点是函数的单调性,奇偶性概念的形成与熟悉。教学的难点是领悟函数单调性,奇偶性的本质,把握单调性的证实。
(2)函数的单调性这一性质学生在初中所学函数中曾经了解过,但只是从图象上直观观察图象的上升与下降,而现在要求把它上升到理论的高度,用准确的数学语言去刻画它。这种由形到数的翻译,从直观到抽象的转变对高一的学生来说是比较困难的,因此要在概念的形成上重点下功夫。单调性的证实是学生在函数内容中首次接触到的代数论证内容,学生在代数论证推理方面的能力是比较弱的,许多学生甚至还搞不清什么是代数证实,也没有意识到它的重要性,所以单调性的证实自然就是教学中的难点。
三、教法建议
(1)函数单调性概念引入时,可以先从学生熟悉的一次函数,二次函数。反比例函数图象出发,回忆图象的增减性,从这点感性熟悉出发,通过问题逐步向抽象的定义靠拢。如可以设计这样的问题:图象怎么就升上去了?可以从点的坐标的角度,也可以从自变量与函数值的关系的角度来解释,引导学生发现自变量与函数值的的变化规律,再把这种规律用数学语言表示出来。在这个过程中对一些关键的词语(某个区间,任意,都有)的理解与必要性的熟悉就可以融入其中,将概念的形成与熟悉结合起来。
(2)函数单调性证实的步骤是严格规定的,要让学生按照步骤去做,就必须让他们明确每一步的必要性,每一步的目的,非凡是在第三步变形时,让学生明确变换的目标,到什么程度就可以断号,在例题的选择上应有不同的变换目标为选题的标准,以便帮助学生总结规律。函数的奇偶性概念引入时,可设计一个课件,以的图象为例,让自变量互为相反数,观察对应的函数值的变化规律,先从具体数值开始,逐渐让在数轴上动起来,观察任意性,再让学生把看到的用数学表达式写出来。经历了这样的过程,再得到等式时,就比较轻易体会它代表的是无数多个等式,是个恒等式。关于定义域关于原点对称的问题,也可借助课件将函数图象进行多次改动,帮助学生发现定义域的对称性,同时还可以借助图象(如)说明定义域关于原点对称只是函数具备奇偶性的必要条件而不是充分条件。
高一数学教案案例篇8
学习重点:了解弧度制,并能进行弧度与角度的换算
学习难点:弧度的概念及其与角度的关系。
学习目标
①了解弧度制,能进行弧度与角度的换算。
②认识弧长公式,能进行简单应用。对弧长公式只要求了解,会进行简单应用,不必在应用方面加深。
③了解角的集合与实数集建立了一一对应关系,培养学生学会用函数的观点分析、解决问题。
教学过程
一、自主学习
1、长度等于半径长的圆弧所对的圆心角叫做1弧度角,记作1,或1弧度,或1(单位可以省略不写)。这种度量角的单位制称为。
2、正角的弧度数是数,负角的弧度数是数,零角的弧度数是。
3、角的弧度数的绝对值。(为弧长,为半径)
4:完成特殊角的度数与弧度数的对应表。
角度030456090120
弧度
角度135150180210225240
弧度
角度270300315330360
弧度
5、扇形面积公式:。
二、师生互动
例1把化成弧度。
变式:把化成度。
小结:在具体运算时,弧度二字和单位符号rad可省略,如:3表示3rad,sin表示rad角的正弦。
例2用弧度制表示:
(1)终边在轴上的角的集合;
(2)终边在轴上的角的集合。
变式:终边在坐标轴上的角的集合。
例3、知扇形的周长为8,圆心角为2rad,,求该扇形的面积。
三、巩固练习
1、若=—3,则角的终边在()。
A、第一象限B、第二象限
C、第三象限D、第四象限
2、半径为2的圆的圆心角所对弧长为6,则其圆心角为。
四、课后反思
五、课后巩固练习
1、用弧度制表示终边在下列位置的角的集合:
(1)直线y=x;(2)第二象限。
2、圆弧长度等于截其圆的内接正三角形边长,求其圆心角的弧度数,并化为度表示。
高一数学教案案例篇9
(一)教学目标
1.知识与技能
(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集和交集.
(2)能使用Venn图表示集合的并集和交集运算结果,体会直观图对理解抽象概念的作用。
(3)掌握的关的术语和符号,并会用它们正确进行集合的并集与交集运算。
2.过程与方法
通过对实例的分析、思考,获得并集与交集运算的法则,感知并集和交集运算的实质与内涵,增强学生发现问题,研究问题的创新意识和能力.
3.情感、态度与价值观
通过集合的并集与交集运算法则的发现、完善,增强学生运用数学知识和数学思想认识客观事物,发现客观规律的兴趣与能力,从而体会数学的应用价值.
(二)教学重点与难点
重点:交集、并集运算的含义,识记与运用.
难点:弄清交集、并集的含义,认识符号之间的区别与联系
(三)教学方法
在思考中感知知识,在合作交流中形成知识,在独立钻研和探究中提升思维能力,尝试实践与交流相结合.
(四)教学过程
教学环节教学内容师生互动设计意图
提出问题引入新知思考:观察下列各组集合,联想实数加法运算,探究集合能否进行类似“加法”运算.
(1)A={1,3,5},B={2,4,6},C={1,2,3,4,5,6}
(2)A={x|x是有理数},
B={x|x是无理数},
C={x|x是实数}.
师:两数存在大小关系,两集合存在包含、相等关系;实数能进行加减运算,探究集合是否有相应运算.
生:集合A与B的元素合并构成C.
师:由集合A、B元素组合为C,这种形式的组合就是为集合的并集运算.生疑析疑,
导入新知
形成
概念
思考:并集运算.
集合C是由所有属于集合A或属于集合B的元素组成的,称C为A和B的并集.
定义:由所有属于集合A或集合B的元素组成的集合.称为集合A与B的并集;记作:A∪B;读作A并B,即A∪B={x|x∈A,或x∈B},Venn图表示为:
师:请同学们将上述两组实例的共同规律用数学语言表达出来.
学生合作交流:归纳→回答→补充或修正→完善→得出并集的定义.在老师指导下,学生通过合作交流,探究问题共性,感知并集概念,从而初步理解并集的含义.
应用举例例1设A={4,5,6,8},B={3,5,7,8},求A∪B.
例2设集合A={x|–1<x<2},集合b={x|1<x<3},求a∪b.< p="">
例1解:A∪B={4,5,6,8}∪{3,5,7,8}={3,4,5,6,7,8}.
例2解:A∪B={x|–1<x<2}∪{x|1<x<3}={x=–1<x<3}.< p="">
师:求并集时,两集合的相同元素如何在并集中表示.
生:遵循集合元素的互异性.
师:涉及不等式型集合问题.
注意利用数轴,运用数形结合思想求解.
生:在数轴上画出两集合,然后合并所有区间.同时注意集合元素的互异性.学生尝试求解,老师适时适当指导,评析.
固化概念
提升能力
探究性质①A∪A=A,②A∪=A,
③A∪B=B∪A,
④∪B,∪B.
老师要求学生对性质进行合理解释.培养学生数学思维能力.
形成概念自学提要:
①由两集合的所有元素合并可得两集合的并集,而由两集合的公共元素组成的集合又会是两集合的一种怎样的运算?
②交集运算具有的运算性质呢?
交集的定义.
由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集;记作A∩B,读作A交B.
即A∩B={x|x∈A且x∈B}
Venn图表示
老师给出自学提要,学生在老师的引导下自我学习交集知识,自我体会交集运算的含义.并总结交集的性质.
生:①A∩A=A;
②A∩=;
③A∩B=B∩A;
④A∩,A∩.
师:适当阐述上述性质.
自学辅导,合作交流,探究交集运算.培养学生的自学能力,为终身发展培养基本素质.
应用举例例1(1)A={2,4,6,8,10},
B={3,5,8,12},C={8}.
(2)新华中学开运动会,设
A={x|x是新华中学高一年级参加百米赛跑的同学},
B={x|x是新华中学高一年级参加跳高比赛的同学},求A∩B.
例2设平面内直线l1上点的集合为L1,直线l2上点的集合为L2,试用集合的运算表示l1,l2的位置关系.学生上台板演,老师点评、总结.
例1解:(1)∵A∩B={8},
∴A∩B=C.
(2)A∩B就是新华中学高一年级中那些既参加百米赛跑又参加跳高比赛的同学组成的集合.所以,A∩B={x|x是新华中学高一年级既参加百米赛跑又参加跳高比赛的同学}.
例2解:平面内直线l1,l2可能有三种位置关系,即相交于一点,平行或重合.
(1)直线l1,l2相交于一点P可表示为L1∩L2={点P};
(2)直线l1,l2平行可表示为
L1∩L2=;
(3)直线l1,l2重合可表示为
L1∩L2=L1=L2.提升学生的动手实践能力.
归纳总结并集:A∪B={x|x∈A或x∈B}
交集:A∩B={x|x∈A且x∈B}
性质:①A∩A=A,A∪A=A,
②A∩=,A∪=A,
③A∩B=B∩A,A∪B=B∪A.学生合作交流:回顾→反思→总理→小结
老师点评、阐述归纳知识、构建知识网络
课后作业1.1第三课时习案学生独立完成巩固知识,提升能力,反思升华
备选例题
例1已知集合A={–1,a2+1,a2–3},B={–4,a–1,a+1},且A∩B={–2},求a的值.
【解析】法一:∵A∩B={–2},∴–2∈B,
∴a–1=–2或a+1=–2,
解得a=–1或a=–3,
当a=–1时,A={–1,2,–2},B={–4,–2,0},A∩B={–2}.
当a=–3时,A={–1,10,6},A不合要求,a=–3舍去
∴a=–1.
法二:∵A∩B={–2},∴–2∈A,
又∵a2+1≥1,∴a2–3=–2,
解得a=±1,
当a=1时,A={–1,2,–2},B={–4,0,2},A∩B≠{–2}.
当a=–1时,A={–1,2,–2},B={–4,–2,0},A∩B={–2},∴a=–1.
例2集合A={x|–1<x<1},b={x|x<a},< p="">
(1)若A∩B=,求a的取值范围;
(2)若A∪B={x|x<1},求a的取值范围.
【解析】(1)如下图所示:A={x|–1<x<1},b={x|x<a},且a∩b=,< p="">
∴数轴上点x=a在x=–1左侧.
∴a≤–1.
(2)如右图所示:A={x|–1<x<1},b={x|x<a}且a∪b={x|x<1},< p="">
∴数轴上点x=a在x=–1和x=1之间.
∴–1<a≤1.< p="">
例3已知集合A={x|x2–ax+a2–19=0},B={x|x2–5x+6=0},C={x|x2+2x–8=0},求a取何实数时,A∩B与A∩C=同时成立?
【解析】B={x|x2–5x+6=0}={2,3},C={x|x2+2x–8=0}={2,–4}.
由A∩B和A∩C=同时成立可知,3是方程x2–ax+a2–19=0的解.将3代入方程得a2–3a–10=0,解得a=5或a=–2.
当a=5时,A={x|x2–5x+6=0}={2,3},此时A∩C={2},与题设A∩C=相矛盾,故不适合.
当a=–2时,A={x|x2+2x–15=0}={3,5},此时A∩B与A∩C=,同时成立,∴满足条件的实数a=–2.
例4设集合A={x2,2x–1,–4},B={x–5,1–x,9},若A∩B={9},求A∪B.
【解析】由9∈A,可得x2=9或2x–1=9,解得x=±3或x=5.
当x=3时,A={9,5,–4},B={–2,–2,9},B中元素违背了互异性,舍去.
当x=–3时,A={9,–7,–4},B={–8,4,9},A∩B={9}满足题意,故A∪B={–7,–4,–8,4,9}.
当x=5时,A={25,9,–4},B={0,–4,9},此时A∩B={–4,9}与A∩B={9}矛盾,故舍去.
综上所述,x=–3且A∪B={–8,–4,4,–7,9}.
高一数学教案案例篇10
一、指导思想
以校本教研为基础,以市第__届学科带头人评选活动为契机,以学科基地为阵地,以网络教研为形式,以提高课堂教学的有效性为突破口,以深入推进课程改革为重点,以促进学生全面发展和教师专业成长为目标,进一步全面深化教学改革,全面推进素质教育,全面提升学科品位,全面提高学科质量。
二、工作要点
1、扎实开展校本教研。通过“骨干引路”、“自我反思”、“同伴协助”、“联片互动”、“专业扶持”等形式,在全体小学数学教师中广泛、深入、持久、扎实、有效地开展新课程下的校本教研活动。通过研究,促进课改理念在课堂教学中的运用,促进课堂教学有效性的提升,促进全体教师的专业发展,尤其是促进农村小学教师的专业发展。
2、认真抓好教学视导。对全市小学的进行认真视导,通过听课、评课、讲座、问卷、教学常规检查、组织教师和学生座谈等形式,总结教学经验,发现和解决教学问题,推动教学研究,提高教学质量。
3、建立学科教研基地。充分利用学科教研基地,广泛、深入开展数学新课程领域的相关问题研究和探讨,推动全市小学数学教学研究工作。本学年研究重点为:如何推进网上学习和网络教研。
4、切实改革考试评价。要指导学校建立新的评价考试制度,大力改革考试内容和形式,使之符合新课程的新要求。要通过考试,发现学生的潜在能力与不足,判断学生的发展方向,促进学生的知识与技能,过程与方法,情感态度价值观和培养创新精神与实践能力的全面和谐发展。
5、加强农村课改指导。本着求真务实的态度,研究在乡村教师、教学设施条件较差的情况下,如何有效地促进课程教学改革,推进乡村课程改革顺利实施。
6、着力网研骨干培训。在培训对象上,要加强对各校网研骨干的培训;在培训内容上,要结合教学改革的需要组织培训;在培训的方式上,要多采用参与式、互动式等方式。要切实通过培训,提高网研兴趣和能力。
7、认真组织学科带头人评比活动。要严格按照市教育局和教科院要求,做好市第__届小学数学学科带头人的评选工作。
8、抓好学科专业委员会建设。本学年,要召开学科专业委员会年会,并组织学科专业委员会开展主题研究论坛,深入研究教学改革的难点、热点问题。
高一数学教案案例篇11
一、教学目标
1.掌握商的算术平方根的性质,能利用性质进行二次根式的化简与运算;
2.会进行简单的二次根式的除法运算;
3.使学生掌握分母有理化概念,并能利用分母有理化解决二次根式的化简及近似计算问题;
4.培养学生利用二次根式的除法公式进行化简与计算的能力;
5.通过二次根式公式的引入过程,渗透从特殊到一般的归纳方法,提高学生的&39;归纳总结能力;
6.通过分母有理化的教学,渗透数学的简洁性.
二、教学重点和难点
1.重点:会利用商的算术平方根的性质进行二次根式的化简,会进行简单的二次根式的除法运算,还要使学生掌握二次根式的除法采用分母有理化的方法进行.
2.难点:二次根式的除法与商的算术平方根的关系及应用.
三、教学方法
从特殊到一般总结归纳的方法以及类比的方法,在学习了二次根式乘法的基础上本小节
内容可引导学生自学,进行总结对比.
高一数学教案案例篇12
各位评委、老师,大家好!
今天我要进行说课的框题是《价格变动的影响》。下面,我将从对教材的理解、对学生的分析、教法和学法、教学过程和板书设计几个方面来具体阐述。
一、首先,我们来认识教材、把握教材
1、说本框的地位和作用
《价格变动的影响》是人教版教材高一政治必修1第一单元第2课第2个框题,该框的内容实质上讲的是价值规律的作用,是第一单元《生活与消费》的重点和核心。学生在前面已经学习的货币的有关知识和价格变动的原因,为本框题的学习作了铺垫,本框题正是承接这两部分(货币的有关知识和价格变动的原因)内容,同时为第3课《多彩的消费》的学习打下基础,因此具有承上启下的作用,在经济常识中具有不容忽视的重要的地位。
2、说教学目标
关于本课,课程标准是这样要求的:归纳影响商品价格变化的`因素,理解价格变动的意义,评价商品和服务的变化对我们生活的影响。
在认真解读课程标准的前提下,根据学生的实际情况,我设立以下教学目标:
(1)知识方面:通过本框学习,使学生懂得价格变动与商品需求量之间的一般规律;面对价格的变动,知道不同商品的需求弹性不同,以及价格变动对相关商品需求量的影响。
(2)能力方面:通过本框学习,使学生能够运用价格变动对生活的影响分析相关的生活现象及解决实际生活的实践能力,培养学生透过现象看本质的能力,从而提高学生参与经济生活的水平。
(3)情感态度价值观:通过学习,使学生关心生活中的小事,认识价格的变动,增强参与经济生活的自主性,树立竞争意识,以适应激烈的市场竞争。
3、说教学重难点
重点:价格变动对人们生活和生产的影响
难点:价格变动对替代品与互补品的影响
二、说对学生的分析
高一学生对经济生活的内容很感兴趣,对经济生活中的现象有一定程度的关注和了解,有利于教学活动的开展,但我的学生主要来自农村,知识面有待拓展,表达能力也有待提高,因此我选择与生活有密切关联的、贴近学生实际的事例为主进行分析,以便激发学生的学习兴趣和参与热情,提高学生的积极性。
三、说教法和学法
(1)接下来说说我将采用的教学方法
以多媒体为辅助教学手段,采用情景探究法。第一步,创设情景,提出问题;第二步,小组讨论,自主探究;第三步,师生互动,建构知识。
(2)接下来再说说我对学生学法的指导
本着以学生为本的理念,着眼于学生的终身发展,在传授知识的同时,更加注重学习的过程,更加注重能力的培养,因而我采用了新课程提倡的自主学习、合作学习和探究学习。
四、下面我重点介绍一下我的教学过程的设计
1、创设情景,导入新课
俗话说:好的开端是成功的一半。因此在导入新课时如果能创设学生感兴趣的情境就能把学生的注意力集中起来,调动学生的积极性,引起学生的求知欲。
所以我首先在导入时创设情境:
情景设置一:《美国人梦想的破灭》这个情景讲述的是美国人生来就有这样一个梦想——有房有车。房子要大大的,前有花园,后有游泳池;汽车要豪华加长型,看着气派,跑起来威风,驾驶起来也舒适。然而,美国人的梦想正在破灭。由于次贷危机,即购房贷款不能按时缴纳而面临被银行拍卖,这使前一个梦想破灭;而后一个梦想也濒临灭亡!原因何在?石油价格的上涨(多媒体同时显示:国际油价变动情况简介:20__年28$/桶20__年120$/桶20__年82$/桶)。美国人生活区和工作地有时距离上百公里,驱车往返使美国人不堪负重。还有部分美国人不得不辞去在外地的工作转而就近就业,导致部分公司缺少员工,企业生产无法正常进行,为了留住人才,公司增加了外地工人的补贴,使企业的成本增加。由此可见,商品价格的涨跌对人们生活有重大影响,甚至影响人们的生活方式,进而影响企业的生产。
设计此例目的有二:一是调动学生的积极性,学生对美国任何风吹草动都感兴趣,特别是不利的事情;二是此例在第3课《影响消费水平的因素》可继续使用,达到一材多用的目的。
在此基础上自然过渡到本框内容:既然价格变动对人们的生活生产有这么重大的影响,那就让我们共同了解和学习价格变动的影响(在黑板上同时板书)。
2、在推进新课时我创设这样一个情景——《请给老师提点建议》
情景设置二:《请给老师提点建议》:"老师现在需要一个交通工具,可以选择的有小汽车、摩托和电动车。我该怎么选择呢?"
之所以设计这样的案例,因为他们会觉得:老师也需要我的帮助?继而会以帮助老师为荣,积极的"献计献策",从而活跃课堂气氛,进一步调动学生的积极性。
学生此时会迫不及待地帮老师进行选择,大部分学生会鼓动老师选择小汽车,首先调动起学生的参与热情。
我继续介绍相关情况:"家用小汽车售价一般在5到6万元,摩托车售价在5000元上下,电动车大约20__元。"小汽车老师是买不起的,因为价格太高了。我想其他人也会限于价格而购买者只能是一部分人。这说明了价格影响人们的需求量。价格高,人们减少对它的购买;如果汽车价格降至和摩托车差不多呢?(学生会哄笑"我们都买一辆",有学生会提出异议:不可能,价值决定价格)学生会七嘴八舌地表达自己的想法,而这,正是我要达到的效果。
我会在此基础上反问:"同学们想一想,如果大米的价格也大幅下降,人们对它的需求会不会骤然增多呢?"学生自然知道不会。如果大米的价格大幅度上涨,会减少对它的需求量吗?同样不会。于是可以得出结论:价格变动会引起需求量变动,但不同商品的需求量对价格变动的反应程度是不同的。价格变动对生活必需品需求量的影响比较小,对高档耐用品需求量的影响比较大。
"不降价我就不买了,那我只能在后两种中选择了".
同时提出两个问题:以多媒体方式显示
◆我能不能两个都买?为什么?
◆我如果不能都去选择,如果从经济实用的角度考虑,我该选哪一个?受什么影响呢?
请你提出中肯的建议,并说出选择的理由。
要求学生用3分钟时间阅读教材P15第3~5自然段。
同时用多媒体出示相关内容:"摩托车每百公里耗油量一般3升左右,每升约6元,电动车每百公里耗电量约15度,每度0.56元。"
学生通过对问题的思考与回答,结合课本自觉,他们会帮老师做出正确的选择:只能买一个——电动车。而通过理由的阐述,学生明白了摩托车和电动车是互为替代品,而对于两者进行选择时还得考虑相关的商品,就懂得了还受油价和电价的制约,了解了什么是互补商品,较易得出相关商品价格的变动对消费者需求的影响:一种商品价格上升,需求量会减少,会导致它的互补商品的需求量也减少;一种商品价格上升,需求量减少,会导致它的替代商品的需求量增加。这样学生就知道了,消费者对既定商品的需求不仅受该商品自身价格变动的影响,而且受相关商品价格变动的影响。
这就是价格变动对生活的影响,对生产经营有什么影响呢?
情景设置三:《大蒜价格的变动》。这是日常生活当中常见的,学生有深切的感受,会说出价格:5、6元一斤!引导学生思考大蒜价格的变化情况,学生说过之后用多媒体出示大蒜价格近四年来的变化。07——09.4月间,价格在0.2元/斤,09年5月份以来至今逐渐涨到了5、6元/斤,时达到8.5元/斤。
现在思考:
◆大蒜价格的涨落是怎样影响蒜农生产活动的?
◆如果我们设想,大蒜价格今后会怎样变化,原因是什么?蒜农该如何应对这种变化?
让学生前后四人为一组,用3到5分钟边阅读教材P16边进行讨论分析。由于学生主要来自农村,对此比较熟悉,甚至自己家就种植过大蒜或正在种植,有切身感受,不难得出结论:面对商品价格变动,生产者一般会调节生产,提高劳动生产率,生产适销对路的高质量产品。即价格变动对生产经营的影响。
之所以这样设计,因为这部分知识是本节课要掌握的重点所在,与学生生活实际结合的比较紧密,理论难度又不大,这样由他们自已讨论得出知识,可以增强他们的自信心,充分调动他们学习的主动性和积极性,使他们真正成为学习的主人,同时在自主探究与小组讨论的过程中,让他们学着如何自主探究学习,如何与人合作学习,最终使他们真正会学习。
在这里,我对课本上的价格与供求关系图有不同意见。我觉得如果把"价格变动"放在两头,效果会更好,也更直观的表现是由于价格的变动引起生产规模的变化。(同时用多媒体展示这一变化)
3、当堂处理一些练习题,以练习巩固学生刚掌握的知识及对知识的理解程度。在这一环节中,我会利用学生手中已有的资料,处理随堂训练。大约5——8分钟。
4、最后我预留出5分钟时间给学生自由提问,可以是本节有关内容的理解,也可以是有关的生活中遇到的不太理解的经济现象,我将力求给学生一个合理的解释,如果我也不明白,将如实告诉学生,我会下去查资料,我也要继续学习,提高自己,在下节上课时给予解决。
这所以这样设计,是要给学生一个表达自己的机会,锻炼发言的能力,同时给学生质疑与拓展开放的时空。我相信学生:我给学生一个天地,他们还我一个惊喜!
5、作业布置:做《优化探究》最后一个主观题。
五板书设计:
各位领导、老师,我今天的说课到此结束,请各位老师多提意见,谢谢!
高一数学教案案例篇13
教学目标
掌握等差数列与等比数列的概念,通项公式与前n项和公式,等差中项与等比中项的概念,并能运用这些知识解决一些基本问题。
教学重难点
掌握等差数列与等比数列的概念,通项公式与前n项和公式,等差中项与等比中项的概念,并能运用这些知识解决一些基本问题。
教学过程
等比数列性质请同学们类比得出。
【方法规律】
1、通项公式与前n项和公式联系着五个基本量,“知三求二”是一类最基本的运算题。方程观点是解决这类问题的基本数学思想和方法。
2、判断一个数列是等差数列或等比数列,常用的方法使用定义。特别地,在判断三个实数a,b,c成等差(比)数列时,常用(注:若为等比数列,则a,b,c均不为0)
3、在求等差数列前n项和的(小)值时,常用函数的思想和方法加以解决。
【示范举例】
例1:(1)设等差数列的前n项和为30,前2n项和为100,则前3n项和为。
(2)一个等比数列的前三项之和为26,前六项之和为728,则a1=,q=。
例2:四数中前三个数成等比数列,后三个数成等差数列,首末两项之和为21,中间两项之和为18,求此四个数。
例3:项数为奇数的等差数列,奇数项之和为44,偶数项之和为33,求该数列的中间项。
高一数学教案案例篇14
一、指导思想与理论依据
数学是一门培养人的思维,发展人的思维的重要学科。因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”。所以在学生为主体,教师为主导的原则下,要充分揭示获取知识和方法的思维过程。因此本节课我以建构主义的“创设问题情境——提出数学问题——尝试解决问题——验证解决方法”为主,主要采用观察、启发、类比、引导、探索相结合的教学方法。在教学手段上,则采用多媒体辅助教学,将抽象问题形象化,使教学目标体现的更加完美。
二、教材分析
三、学情分析
本节课的授课对象是本校高一(1)班全体同学,本班学生水平处于中等偏下,但本班学生具有善于动手的良好学习习惯,所以采用发现的教学方法应该能轻松的完成本节课的教学内容.
四、教学目标
(1).基础知识目标:理解诱导公式的发现过程,掌握正弦、余弦、正切的诱导公式;
(2).能力训练目标:能正确运用诱导公式求任意角的正弦、余弦、正切值,以及进行简单的三角函数求值与化简;
(3).创新素质目标:通过对公式的推导和运用,提高三角恒等变形的能力和渗透化归、数形结合的数学思想,提高学生分析问题、解决问题的能力;
五、教学重点和难点
1.教学重点
理解并掌握诱导公式.
2.教学难点
正确运用诱导公式,求三角函数值,化简三角函数式.
六、教法学法以及预期效果分析
“授人以鱼不如授之以鱼”,作为一名老师,我们不仅要传授给学生数学知识,更重要的是传授给学生数学思想方法,如何实现这一目的,要求我们每一位教者苦心钻研、认真探究.下面我从教法、学法、预期效果等三个方面做如下分析.
1.教法
数学教学是数学思维活动的教学,而不仅仅是数学活动的结果,数学学习的目的不仅仅是为了获得数学知识,更主要作用是为了训练人的思维技能,提高人的思维品质.
在本节课的教学过程中,本人以学生为主题,以发现为主线,尽力渗透类比、化归、数形结合等数学思想方法,采用提出问题、启发引导、共同探究、综合应用等教学模式,还给学生“时间”、“空间”,由易到难,由特殊到一般,尽力营造轻松的学习环境,让学生体味学习的快乐和成功的喜悦.
2.学法
在本节课的教学过程中,本人引导学生的学法为思考问题、共同探讨、解决问题简单应用、重现探索过程、练习巩固。让学生参与探索的全部过程,让学生在获取新知识及解决问题的方法后,合作交流、共同探索,使之由被动学习转化为主动的自主学习.
3.预期效果
本节课预期让学生能正确理解诱导公式的发现、证明过程,掌握诱导公式,并能熟练应用诱导公式了解一些简单的化简问题.
高一数学教案案例篇15
一、教学目标
1、知识与技能目标:认识一元二次方程,并能分析简单问题中的数量关系列出一元二次方程。
2、过程与方法:学生通过观察与模仿,建立起对一元二次方程的感性认识,获得对代数式的初步经验,锻炼抽象思维能力。
3、情感态度与价值观:学生在独立思考的过程中,能将生活中的经验与所学的知识结合起来,形成实事求是的态度以及进行质疑和独立思考的习惯。
二、教学重难点
重点:理解一元二次方程的意义,能根据题目列出一元二次方程,会将不规则的一元二次方程化成标准的一元二次方程。
难点:找对题目中的数量关系从而列出一元二次方程。
三、教学过程
(一)导入新课
师:同学们我们就要开始学习一元二次方程了,在开始讲新课之前,我们首先来看一看第二十二章的这张图片,图片上有一个铜雕塑,有哪位同学能告诉我这是谁吗?
生:老师,这是雷锋叔叔。
师:对,这是辽宁省抚顺市雷锋纪念馆前的雷锋雕像,雷锋叔叔一生乐于助人,奉献了自己方便了他人,所以即使他去世了,也活在人们心中,所以人们才给他做一个雕塑纪念他,同学们是不是也要向雷锋叔叔学习啊?
生:是的老师。
师:可是原来纪念馆的工作人员在建造这座雕像的时候曾经遇到了一个问题,也就是图片下面的这个问题,同学们想不想为他们解决这个问题呢?
生:想。
师:同学们也都很乐于助人,好那我们看一看这个问题是什么,然后带着这个问题开始我们今天的学一元二次方程。
(二)新课教学
师:我们来看到这个题目,要设计一座2m高的人体雕像,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,雕像的下部应设计为全高?同学们用AC来表示上部,BC来表示下部先简单列一下这个比例关系,待会老师下去看看同学们的式子。
(下去巡视)
(三)小结作业
师:今天大家学习了一元二次方程,同学们回去还要加强巩固,做练习题的1、2(2)题。
四、板书设计
五、教学反思